100 research outputs found

    Multidentate Terephthalamidate and Hydroxypyridonate Ligands: Towards New Orally Active Chelators

    Get PDF
    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity

    Formation of regulatory modules by local sequence duplication

    Get PDF
    Turnover of regulatory sequence and function is an important part of molecular evolution. But what are the modes of sequence evolution leading to rapid formation and loss of regulatory sites? Here, we show that a large fraction of neighboring transcription factor binding sites in the fly genome have formed from a common sequence origin by local duplications. This mode of evolution is found to produce regulatory information: duplications can seed new sites in the neighborhood of existing sites. Duplicate seeds evolve subsequently by point mutations, often towards binding a different factor than their ancestral neighbor sites. These results are based on a statistical analysis of 346 cis-regulatory modules in the Drosophila melanogaster genome, and a comparison set of intergenic regulatory sequence in Saccharomyces cerevisiae. In fly regulatory modules, pairs of binding sites show significantly enhanced sequence similarity up to distances of about 50 bp. We analyze these data in terms of an evolutionary model with two distinct modes of site formation: (i) evolution from independent sequence origin and (ii) divergent evolution following duplication of a common ancestor sequence. Our results suggest that pervasive formation of binding sites by local sequence duplications distinguishes the complex regulatory architecture of higher eukaryotes from the simpler architecture of unicellular organisms

    Population-scale proteome variation in human induced pluripotent stem cells

    Get PDF
    Human disease phenotypes are driven primarily by alterations in protein expression and/or function. To date, relatively little is known about the variability of the human proteome in populations and how this relates to variability in mRNA expression and to disease loci. Here, we present the first comprehensive proteomic analysis of human induced pluripotent stem cells (iPSC), a key cell type for disease modelling, analysing 202 iPSC lines derived from 151 donors, with integrated transcriptome and genomic sequence data from the same lines. We characterised the major genetic and non-genetic determinants of proteome variation across iPSC lines and assessed key regulatory mechanisms affecting variation in protein abundance. We identified 654 protein quantitative trait loci (pQTLs) in iPSCs, including disease-linked variants in protein-coding sequences and variants with trans regulatory effects. These include pQTL linked to GWAS variants that cannot be detected at the mRNA level, highlighting the utility of dissecting pQTL at peptide level resolution

    Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors

    Get PDF
    Large cohorts of human induced pluripotent stem cells (iPSCs) from healthy donors are a potentially powerful tool for investigating the relationship between genetic variants and cellular behavior. Here, we integrate high content imaging of cell shape, proliferation, and other phenotypes with gene expression and DNA sequence datasets from over 100 human iPSC lines. By applying a dimensionality reduction approach, Probabilistic Estimation of Expression Residuals (PEER), we extracted factors that captured the effects of intrinsic (genetic concordance between different cell lines from the same donor) and extrinsic (cell responses to different fibronectin concentrations) conditions. We identify genes that correlate in expression with intrinsic and extrinsic PEER factors and associate outlier cell behavior with genes containing rare deleterious non-synonymous SNVs. Our study, thus, establishes a strategy for examining the genetic basis of inter-individual variability in cell behavior

    Dosimetric evaluation and radioimmunotherapy of anti-tumour multivalent Fab́ fragments

    Get PDF
    We have been investigating the use of cross-linked divalent (DFM) and trivalent (TFM) versions of the anti-carcinoembryonic antigen (CEA) monoclonal antibody A5B7 as possible alternatives to the parent forms (IgG and F(ab́)2) which have been used previously in clinical radioimmunotherapy (RIT) studies in colorectal carcinoma. Comparative biodistribution studies of similar sized DFM and F(ab́)2 and TFM and IgG, radiolabelled with both 131I and 90Y have been described previously using the human colorectal tumour LS174T nude mouse xenograft model (Casey et al (1996) Br J Cancer 74: 1397–1405). In this study quantitative estimates of radiation distribution and RIT in the xenograft model provided more insight into selecting the most suitable combination for future RIT. Radiation doses were significantly higher in all tissues when antibodies were labelled with 90Y. Major contributing organs were the kidneys, liver and spleen. The extremely high absorbed dose to the kidneys on injection of 90Y-labelled DFM and F(ab́)2 as a result of accumulation of the radiometal would result in extremely high toxicity. These combinations are clearly unsuitable for RIT. Cumulative dose of 90Y-TFM to the kidney was 3 times lower than the divalent forms but still twice as high as for 90Y-IgG. TFM clears faster from the blood than IgG, producing higher tumour to blood ratios. Therefore when considering only the tumour to blood ratios of the total absorbed dose, the data suggests that TFM would be the most suitable candidate. However, when corrected for equitoxic blood levels, doses to normal tissues for TFM were approximately twice the level of IgG, producing a two-fold increase in the overall tumour to normal tissue ratio. In addition RIT revealed that for a similar level of toxicity and half the administered activity, 90Y-IgG produced a greater therapeutic response. This suggests that the most promising A5B7 antibody form with the radionuclide 90Y may be IgG. Dosimetry analysis revealed that the tumour to normal tissue ratios were greater for all 131I-labelled antibodies. This suggests that 131I may be a more suitable radionuclide for RIT, in terms of lower toxicity to normal tissues. The highest tumour to blood dose and tumour to normal tissue ratio at equitoxic blood levels was 131I-labelled DFM, suggesting that 131I-DFM may be best combination of antibody and radionuclide for A5B7. The dosimetry estimates were in agreement with RIT results in that twice the activity of 131I-DFM must be administered to produce a similar therapeutic effect as 131I-TFM. The toxicity in this therapy experiment was minimal and further experiments at higher doses are required to observe if there would be any advantage of a higher initial dose rate for 131I-DFM. © 1999 Cancer Research Campaig

    Radioactive Holmium Acetylacetonate Microspheres for Interstitial Microbrachytherapy: An In Vitro and In Vivo Stability Study

    Get PDF
    Purpose The clinical application of holmium acetylacetonate microspheres (HoAcAcMS) for the intratumoral radionuclide treatment of solid malignancies requires a thorough understanding of their stability. Therefore, an in vitro and an in vivo stability study with HoAcAcMS was conducted. Methods HoAcAcMS, before and after neutron irradiation, were incubated in a phosphate buffer at 37°C for 6 months. The in vitro release of holmium in this buffer after 6 months was 0.5%. Elemental analysis, scanning electron microscopy, infrared spectroscopy and time of flight secondary ion mass spectrometry were performed on the HoAcAcMS. Results After 4 days in buffer the acetylacetonate ligands were replaced by phosphate, without altering the particle size and surface morphology. HoAcAcMS before and after neutron irradiation were administered intratumorally in VX2 tumor-bearing rabbits. No holmium was detected in the faeces, urine, femur and blood. Histological examination of the tumor revealed clusters of intact microspheres amidst necrotic tissue after 30 days. Conclusion HoAcAcMS are stable both in vitro and in vivo and are suitable for intratumoral radionuclide treatment.Radiation, Radionuclides and ReactorsApplied Science

    Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central aim for studying runs of homozygosity (ROHs) in genome-wide SNP data is to detect the effects of autozygosity (stretches of the two homologous chromosomes within the same individual that are identical by descent) on phenotypes. However, it is unknown which current ROH detection program, and which set of parameters within a given program, is optimal for differentiating ROHs that are truly autozygous from ROHs that are homozygous at the marker level but vary at unmeasured variants between the markers.</p> <p>Method</p> <p>We simulated 120 Mb of sequence data in order to know the true state of autozygosity. We then extracted common variants from this sequence to mimic the properties of SNP platforms and performed ROH analyses using three popular ROH detection programs, PLINK, GERMLINE, and BEAGLE. We varied detection thresholds for each program (e.g., prior probabilities, lengths of ROHs) to understand their effects on detecting known autozygosity.</p> <p>Results</p> <p>Within the optimal thresholds for each program, PLINK outperformed GERMLINE and BEAGLE in detecting autozygosity from distant common ancestors. PLINK's sliding window algorithm worked best when using SNP data pruned for linkage disequilibrium (LD).</p> <p>Conclusion</p> <p>Our results provide both general and specific recommendations for maximizing autozygosity detection in genome-wide SNP data, and should apply equally well to research on whole-genome autozygosity burden or to research on whether specific autozygous regions are predictive using association mapping methods.</p

    The potential to encode sex, age, and individual identity in the alarm calls of three species of Marmotinae

    Get PDF
    In addition to encoding referential information and information about the sender’s motivation, mammalian alarm calls may encode information about other attributes of the sender, providing the potential for recognition among kin, mates, and neighbors. Here, we examined 96 speckled ground squirrels (Spermophilus suslicus), 100 yellow ground squirrels (Spermophilus fulvus) and 85 yellow-bellied marmots (Marmota flaviventris) to determine whether their alarm calls differed between species in their ability to encode information about the caller’s sex, age, and identity. Alarm calls were elicited by approaching individually identified animals in live-traps. We assume this experimental design modeled a naturally occurring predatory event, when receivers should acquire information about attributes of a caller from a single bout of alarm calls. In each species, variation that allows identification of the caller’s identity was greater than variation allowing identification of age or sex. We discuss these results in relation to each species’ biology and sociality
    corecore