434 research outputs found

    Sporadic flat ileal adenocarcinoma: an intriguing challenge in the comprehension of a rare neoplasia and its genesis. Case report and review of literature

    Get PDF
    Small bowel adenocarcinoma is a rare tumor, with a still not well studied tumorigenesis process, usually presenting in an advanced stage. The clinical diagnosis is often difficult; surgery is the treatment of choice when feasible, while the chemotherapic approach is still not well codified. We describe the case of a 71-yr-old male patient, presenting with an acute right abdomen. At laparotomy the terminal ileum appeared chronically inflamed and thickened. An ileocecal resection with laterolateral ileocolic anastomosis was performed. The gross appearance resembled an inflammatory bowel disease, but microscopic examination revealed the extensive presence of an infiltrating ileal adenocarcinoma. Literature about small bowel adenocarcinoma has been reviewed for better understanding its pathogenesis

    Polytene chromosomes as indicators of phylogeny in several species groups of Drosophila

    Get PDF
    BACKGROUND: Polytene chromosome banding patterns have long been used by Drosophila evolutionists to infer degree of relatedness among taxa. Recently, nucleotide sequences have preempted this traditional method. We place the classical Drosophila evolutionary biology tools of polytene chromosome inversion analysis in a phylogenetic context and assess their utility in comparison to nucleotide sequences. RESULTS: A simultaneous analysis framework was used to examine the congruence of the chromosomal inversion data with more recent DNA sequence data in four Drosophila species groups – the melanogaster, virilis, repleta, and picture wing. Inversions and nucleotides were highly congruent with one another based on incongruence length difference and partitioned Bremer support values. Inversion phylogenies were less resolved because of fewer numbers of characters. Partitioned Bremer supports, corrected for the number of characters in each matrix, were higher for inversion matrices. CONCLUSIONS: Polytene chromosome data are highly congruent with DNA sequence data and, when placed in a simultaneous analysis framework, are shown to be more information rich than nucleotide data

    Development and Testing of a System for Controlled Ultrasound Hyperthermia Treatment With a Phantom Device

    Get PDF
    Hyperthermia is the process of raising tissue temperatures in the range 40 degrees C-45 degrees C for a prolonged time (up to hours). Unlike in ablation therapy, raising the temperature to such levels does not cause necrosis of the tissue but has been postulated to sensitize the tissue for radiotherapy. The ability to maintain a certain temperature in a target region is key to a hyperthermia delivery system. The aim of this work was to design and characterize a heat delivery system for ultrasound hyperthermia able to generate a uniform power deposition pattern in the target region with a closed-loop control, which would maintain the defined temperature over a defined period. The hyperthermia delivery system presented herein is a flexible design with the ability to strictly control the induced temperature rise with a feedback loop. The system can be reproduced elsewhere with relative ease and is adaptable for various tumor sizes/locations and for other temperature elevation applications, such as ablation therapy. The system was fully characterized and tested on a newly designed custom-built phantom with controlled acoustic and thermal properties and containing embedded thermocouples. Additionally, a layer of thermochromic material was fixed above the thermocouples, and the recorded temperature increase was compared to the red, green, and blue (RGB) color change in the material. The transducer characterization allowed for input voltage to output power curves to be generated, thus allowing for the comparison of power deposition to temperature increase in the phantom. Additionally, the transducer characterization generated a field map of the symmetric field. The system was capable of increasing the temperature of the target area by 6 degrees C above body temperature and maintains the temperature to within +/- 0.5 degrees C over a defined period. The increase in temperature correlated with the RGB image analysis of the thermochromic material. The results of this work have the potential to contribute toward increasing confidence in the delivery of hyperthermia treatment to superficial tumors. The developed system could potentially be used for phantom or small animal proof-of-principle studies. The developed phantom test device may be used for testing other hyperthermia systems

    Adjuvants and alternative routes of administration towards the development of the ideal influenza vaccine.

    Get PDF
    Vaccination is universally considered as the principal measure for the control of influenza, which represents a significant burden worldwide, both from a health-care and a socio-economic viewpoint. Conventional non-adjuvanted trivalent influenza vaccines (TIVs) have been recognized as having some deficiencies, such as suboptimal immunogenicity particularly in the elderly, in patients with severe chronic diseases and immunocompromized, indeed, those groups of the population at higher risk of developing severe complications following influenza infection, when compared to healthy adults. Moreover, the protection offered by conventional vaccines may be reduced by periodic antigenic drifts, resulting in a mismatch between the circulating and vaccinal viral strains. Another gap regarding currently available vaccines is related to the egg-based manufacturing system for their production: not only the length of time involved with the latter but also the limited capacity of this platform technology represent a major limitation for the active prevention of influenza, which is particularly important in the case of a new pandemic strain. New technologies used in vaccine composition, administration and manufacture have led to major advances during the last few years, and clinical researchers have continued to work hard, investigating several different strategies to improve the performance of influenza vaccines: namely, the addition of different adjuvants (i.e., MF59- and AS03-vaccines, virosomal formulations), the use of alternative routes of administration or manufacture (i.e., intradermal, nasal and oral vaccines and cell culture- and reverse genetic-based vaccines) or of high doses of antigen, and the development of DNA-vaccines, or the use of conserved viral epitopes (i.e., the extracellular portion of the M2 protein, the nucleoprotein and some domains of the hemagglutinin), in the attempt to produce a "universal target" antigen vaccine. The knowledge acquired represents a fundamental challenge for the control of influenza. An overview of the most recent and interesting results, some of which gained from our own research experience, particularly concerning two successful approaches, of those outlined above, namely the use of: (i) the oil-in-water MF59-adjuvant, and (ii) the intradermal (ID) route for vaccine administration, through a novel microinjection system, will be reported and discussed, together with the possible implications and perspectives to optimize immunization policies against influenza in the near future

    Heptavalent Pneumococcal Conjugate Vaccine: growing knowledge and its implications for Italy

    Get PDF
    Introductive note A wide literature on Streptococcus Pneumoniae (Pn) infections is available, largely published in the recent years, after the introduction of the heptavalent conjugate vaccine in US and in Europe. This review is based on the most up-to-date scientific articles about this pathogen
    • …
    corecore