2 research outputs found

    Prognostic value of circulating tumour DNA in metastatic pancreatic cancer patients: post-hoc analyses of two clinical trials

    No full text
    International audienceObjective: The prognostication of metastatic pancreatic adenocarcinoma (mPDAC) patients remains uncertain, mainly based on carbohydrate antigen 19-9 (CA19-9), with limited utility. Circulating tumour DNA (ctDNA) has been suggested as a prognostic factor, but its added value has been poorly explored. The objective was to determine whether ctDNA is an independent factor for the prognostication of mPDAC.Design: Translational study based on two prospective collections of plasma samples of mPDAC patients naĂŻve for chemotherapy. One used as a test series and the other as validation series coming from two randomised trials (Prodige 35 and Prodige 37). CtDNA was assessed by digital droplet PCR targeting two methylated markers (HOXD8 and POU4F1) according to a newly developed and validated method. Univariate and multivariate analyses were performed according to ctDNA status.Results: Of 372 plasma samples available, 354 patients were analyzed for survival. In the validation series, 145 of 255 patients were found ctDNA positive (56.8%), Median PFS and OS were 5.3 and 8.2 months in ctDNA-positive and 6.2 and 12.6 months in ctDNA-negative patients, respectively. ctDNA positivity was more often associated with young age, high CA19-9 level and neutrophils lymphocytes ratio. In multivariate analysis including these previous markers, ctDNA was confirmed as an independent prognostic marker for PFS (adjusted hazard ratio (HR) 1.5, CI 95% [1.03-2.18], p = 0.034) and OS (HR 1.62, CI 95% [1.05-2.5], p = 0.029).Conclusions: In this first ctDNA assessment in a large series of mPDAC derived from clinical trials, ctDNA was detectable in 56.8% of patients and confirmed as an independent prognostic marker

    An international phase II trial and immune profiling of SBRT and atezolizumab in advanced pretreated colorectal cancer

    No full text
    Abstract Background Immuno-radiotherapy may improve outcomes for patients with advanced solid tumors, although optimized combination modalities remain unclear. Here, we report the colorectal (CRC) cohort analysis from the SABR-PDL1 trial that evaluated the PD-L1 inhibitor atezolizumab in combination with stereotactic body radiation therapy (SBRT) in advanced cancer patients. Methods Eligible patients received atezolizumab 1200 mg every 3 weeks until progression or unmanageable toxicity, together with ablative SBRT delivered concurrently with the 2nd cycle (recommended dose of 45 Gy in 3 fractions, adapted upon normal tissue tolerance constraint). SBRT was delivered to at least one tumor site, with at least one additional measurable lesion being kept from the radiation field. The primary efficacy endpoint was one-year progression-free survival (PFS) rate from the start of atezolizumab. Sequential tumor biopsies were collected for deep multi-feature immune profiling. Results Sixty pretreated (median of 2 prior lines) advanced CRC patients (38 men [63%]; median age, 59 years [range, 20–81 years]; 77% with liver metastases) were enrolled in five centers (France: n = 4, Spain: n = 1) from 11/2016 to 04/2019. All but one (98%) received atezolizumab and 54/60 (90%) received SBRT. The most frequently irradiated site was lung (n = 30/54; 56.3%). Treatment-related G3 (no G4-5) toxicity was observed in 3 (5%) patients. Median OS and PFS were respectively 8.4 [95%CI:5.9–11.6] and 1.4 months [95%CI:1.2–2.6], including five (9%) patients with PFS > 1 year (median time to progression: 19.2 months, including 2/5 MMR-proficient). Best overall responses consisted of stable disease (n = 38; 64%), partial (n = 3; 5%) and complete response (n = 1; 2%). Immune-centric multiplex IHC and RNAseq showed that SBRT redirected immune cells towards tumor lesions, even in the case of radio-induced lymphopenia. Baseline tumor PD-L1 and IRF1 nuclear expression (both in CD3 + T cells and in CD68 + cells) were higher in responding patients. Upregulation of genes that encode for proteins known to increase T and B cell trafficking to tumors (CCL19, CXCL9), migration (MACF1) and tumor cell killing (GZMB) correlated with responses. Conclusions This study provides new data on the feasibility, efficacy, and immune context of tumors that may help identifying advanced CRC patients most likely to respond to immuno-radiotherapy. Trial registration EudraCT N°: 2015–005464-42; Clinicaltrial.gov number: NCT02992912
    corecore