9,183 research outputs found

    7 Things Churches Can Do to Make Queer People Feel Welcome

    Full text link
    For as long as I can remember, the church, for me, has been a place characterized by shame and hurt. I remember Christian high school friends telling me that I would go to hell for being Queer. I remember hearing sermons from televangelists about the evils of homosexuality, and church leaders pressuring youth leaders to cast out their Queer members. I\u27ve heard more talk of love the sinner, hate the sin, and God didn\u27t make gay, than anyone should, and I\u27ve even received personalized hate mail declaring that God hates dykes. [excerpt

    Nonverbal cues

    Get PDF

    Compaction of anisotropic granular materials : experiments and simulations

    Full text link
    We present both experimental and numerical investigations of compaction in granular materials composed of rods. As a function of the aspect ratio of the particles, we have observed large variations of the asymptotic packing volume fraction in vertical tubes. The relevant parameter is the ratio between the rod length \ell and the tube diameter DD. Even the compaction dynamics remains unchanged for various particle lengths, a 3d/2d phase transition for grain orientations is observed for /D=1\ell/D = 1. A toy model for the compaction of needles on a lattice is also proposed. This toy model gives a complementary view of our experimental results and leads to behaviors similar to experimental ones.Comment: 5 pages, 10 figure

    Experimental study of the compaction dynamics for 2D anisotropic granular materials

    Full text link
    We present an experimental study of the compaction dynamics for two-dimensional anisotropic granular systems. Compaction dynamics is measured at three different scales : (i) the macroscopic scale through the packing fraction ρ\rho, (ii) the mesoscopic scale through both fractions of aligned grains ϕa\phi_{a} and ideally ordered grains ϕio\phi_{io}, and (iii) the microscopic scale through both rotational and translational grain mobilities μr,t\mu_{r,t}. The effect of the grain rotations on the compaction dynamics has been measured. At the macroscopic scale, we have observed a discontinuity in the late stages of the compaction curve. At the mesoscopic scale, we have observed the formation and the growth of domains made of aligned grains. From a microscopic point of view, measurements reveal that the beginning of the compaction process is essentially related to translational motion of the grains. The grains rotations drive mainly the process during the latest stages of compaction.Comment: 8pages, 11 figure

    Effect of friction in a toy model of granular compaction

    Full text link
    We proposed a toy model of granular compaction which includes some resistance due to granular arches. In this model, the solid/solid friction of contacting grains is a key parameter and a slipping threshold Wc is defined. Realistic compaction behaviors have been obtained. Two regimes separated by a critical point Wc* of the slipping threshold have been emphasized : (i) a slow compaction with lots of paralyzed regions, and (ii) an inverse logarithmic dynamics with a power law scaling of grain mobility. Below the critical point Wc*, the physical properties of this frozen system become independent of Wc. Above the critical point Wc*, i.e. for low friction values, the packing properties behave as described by the classical Janssen theory for silos

    Block to granular-like transition in dense bubble flows

    Full text link
    We have experimentally investigated 2-dimensional dense bubble flows underneath inclined planes. Velocity profiles and velocity fluctuations have been measured. A broad second-order phase transition between two dynamical regimes is observed as a function of the tilt angle θ\theta. For low θ\theta values, a block motion is observed. For high θ\theta values, the velocity profile becomes curved and a shear velocity gradient appears in the flow.Comment: Europhys. Lett. (2003) in pres

    Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations

    Full text link
    We study magneto-elastic oscillations of highly magnetized neutron stars (magnetars) which have been proposed as an explanation for the quasi-periodic oscillations (QPOs) appearing in the decaying tail of the giant flares of soft gamma-ray repeaters (SGRs). We extend previous studies by investigating various magnetic field configurations, computing the Alfv\'en spectrum in each case and performing magneto-elastic simulations for a selected number of models. By identifying the observed frequencies of 28 Hz (SGR 1900+14) and 30 Hz (SGR 1806-20) with the fundamental Alfv\'en QPOs, we estimate the required surface magnetic field strength. For the magnetic field configurations investigated (dipole-like poloidal, mixed toroidal-poloidal with a dipole-like poloidal component and a toroidal field confined to the region of field lines closing inside the star, and for poloidal fields with an additional quadrupole-like component) the estimated dipole spin-down magnetic fields are between 8x10^14 G and 4x10^15 G, in broad agreement with spin-down estimates for the SGR sources producing giant flares. A number of these models exhibit a rich Alfv\'en continuum revealing new turning points which can produce QPOs. This allows one to explain most of the observed QPO frequencies as associated with magneto-elastic QPOs. In particular, we construct a possible configuration with two turning points in the spectrum which can explain all observed QPOs of SGR 1900+14. Finally, we find that magnetic field configurations which are entirely confined in the crust (if the core is assumed to be a type I superconductor) are not favoured, due to difficulties in explaining the lowest observed QPO frequencies (f<30 Hz).Comment: 21 pages, 16 figures, 6 tables, matched to version accepted by MNRAS with extended comparison/discussion to previous wor

    A Minireview Of Cellulose Nanocrystals And Its Potential Integration As Co-product In Bioethanol Production

    Get PDF
    Cellulose nanocrystals appeared as important bio-based products and the collected information in term of production, characterization and application suggest that this nanomaterial could be easily extrapolated to bioethanol production. This review describes recent published syntheses using chemical and enzymatic hydrolyses and different preparations such as high pressure homogenization. Their industrial and medical applications, such as controled of delivery carriers, suggest a large projection of this nanomaterial. The most important aspect in this collected data is the potential to decrease significantly the final cost of the enzymes or the hydrolysis pre-treatment of lignocellulosic materials of all bioethanol processes in such a way that it could be economically feasible from materials such as bagasse, straw or wood resources.562672677Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M., (2008) BioResources, 3, p. 929Goelzer, F.D.E., Faria-Tischer, P.C.S., Vitorino, J.C., Sierakowski, M.R., Tischer, C.A., (2009) Mat. Sci. Eng. C, 29, p. 546Wang, N., Ding, E., Cheng, R., (2008) Langmuir, 24, p. 5Pu, Y., Zhang, J., Elder, T., Deng, Y., Gatenholm, P., Ragauskas, A.J., (2007) Composites: Part B: Eng, 38, p. 360Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C., (2008) Biomacromolecules, 9, p. 57Moon, R.J., (2008) MacGraw-Hill Year Book of Science and Technology, pp. 225-228. , McGraw Hill, N. YorkPostek, M., Brown, E., (2009) Proc, , SPIE 10.1117/2.1200903.1474Ragauskas, A.J., (2007) Cellulase Microfibrills and Nanotechnology, , http://ipst.gatech.edu/faculty_new/faculty_bios/ragauskas/ student_presentations/Portugal_Nanocellulose.pdf, June 2007, PortugalHamad, W., (2006) Can. J. Chem. Eng, 84, p. 513Gray, D.G., (2008) Towards Understanding Wood, Fibre, and Paper-deeper Knowledge Through Modern Analytical Tools, 50. , Turku / Åbo, May 2008, Final seminar of COST Action E41 & Workshop of Action EWegner, T.H., Jones, P.E., (2006) Cellulose, 13, p. 115Postek, M.T., Vladar, A., Dagata, J., Farkas, N., Ming, B., Sabo, R., Wegner, T.H., Beecher, J., (2008) Proc. SPIE, 7042, pp. 70420D. , 2008, doi:10.1117/12.797575Lima, M.M.S., Borsali, R., (2004) Macromol. Rapid Commun, 25, p. 771Gacitua, W., Ballerini, A., Zhang, J., (2005) Maderas- Cienc. Tecnol, 7, p. 159Samir, M.A.S.A., Alloin, F., Dufresne, A., (2005) Biomacromolecules, 6, p. 612Niska, K.O., (2008) Eur. Conf. Compos. Mat. Jene, , Stockholm. SwedenSilva, D.J., D'almeida, M.L.O., (2009) O Papel, 70, p. 34Habibi, Y., Lucia, L.A., Rojas, O.J., (2010) Chem. Rev, 110, p. 3479Cao, X., Habibi, Y., Magalhães, W.L.E., Rojas, O.J., Lucia, L.A., (2011) Curr. Sci, 100, p. 1172Dufresne, A., (2006) J. Nanosci. Nanotechnol, 6, p. 322Dufresne, A., (2008) Can. J. Chem, 86, p. 484Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Peijs, T., (2010) J. Mater. Sci, 45, p. 1Siró, I., Plackett, D., (2010) Cellulose, 17, pp. 459-494Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., (2011) Chem. Soc. Rev, , DOI: 10.1039/c0cs00108bDujardin, E., Blaseby, M., Mann, S., (2003) J. Mater. Chem, 13, p. 696Beck-Candanedo, S., Roman, M., Gray, D.G., (2005) Biomacromolecules, 6, p. 1048Bondeson, D., Mathew, A., Oksman, K., (2006) Cellulose, 13, p. 171Ramires, E.C., Dufresne, A., (2011) Tappi J, 10, p. 9Habibi, Y., Foulon, L., Aguié-Béghin, V., Molinari, M., Douillard, R., (2007) J. Colloid Interf. Sci, 316, p. 388Van Den, O., Berg, J.R., Capadona, C., (2007) Weder, Biomacromolecules, 8, p. 1353Wang, N., Ding, E., Cheng, R., (2007) Polymer, 48, p. 3486Purkait, B.S., Ray, D., Sengupta, S., Kar, T., Mohanty, A., Misra, M., (2011) Ind. Eng. Chem. Res, 50, p. 871Braun, R., Dorgan, J.R., Chandler, J.P., (2008) Biomacromolecules, 9, p. 1255Jean, B., Dubreuil, F., Heux, L., Cousin, F., (2008) Langmuir, 24, p. 3452Filson, P.B., Dawson-Andoh, B.E., (2009) Bioresource Technol, 100, p. 2259Filson, P.B., Dawson-Andoh, B.E., (2009) Bioresource Technol, 100, p. 6661Pandey, J.P., Kim, C.S., Chu, W.S., Lee, C.S., Jang, D.Y., Ahn, S.H., (2009) E-Polymers, 102, p. 1. , http://www.e-polymers.orgKontturi, E., Vuorinen, T., (2009) Cellulose, 16, p. 65Li, Q., Renneckar, S., (2009) Cellulose, 16, p. 1025Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Wood, D.F., Mattoso, L.H.C., Orts, W.J., Imam, S.H., (2009) 11th Intern. Conf. on Advanced Materials-ICAM-2009, , September, Rio de Janeiro, BrazilRosa, M.F., Medeiros, E.S., Malmonge, J.A., Wood, D.F., Mattoso, L.H.C., Orts, W.J., Imam, S.H., (2008) 18° Congr. Brasil. Eng. Ciênc. Mat.-CBIMAT, , November, Porto de Galinhas, PE, Abstr 202-163Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., Yao, J., (2009) Carbohydr. Polym, 76, p. 94Turbak, A.F., Snyder, F.W., Sandberg, K.R., (1983) J. Appl. Polym. Sci. Appl. Polym. Symp, 37, p. 815Seydibeyoglu, M.O., Oksman, K., (2008) Compos. Sci. Technol, 68, p. 908Wagberg, L., Decher, G., Norgren, M., Lindstrom, T., Ankerfors, M., Axnas, K., (2008) Langmuir, 24, p. 784Lee, S.Y., Chun, S.J., Kang, I.A., Park, J.Y., (2009) J. Ind. Eng. Chem, 15, p. 50Bendahou, A., Kaddami, H., Dufresne, A., (2010) Eur. Polym. J, 46, pp. 609-620Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Lindstrom, T., (2007) Biomacromolecules, 8, p. 1934Jiang, L., Chen, X., Li, Z., (2008) Huaxue Yu Shengwu Gongcheng, 25, p. 63Filson, P.B., Dawson-Andoh, B.E., Schwegler-Berry, D., (2009) Green Chem, 11, p. 1808George, J., Ramana, K.V., Bawa, A.S., (2011) Siddaramaiah Inter. J. Biol. Macromol, 48, p. 50Satyamurthy, P., Jain, P., Balasubramanya, R.H., Vigneshwaran, N., (2011) Carbohydr. Polym, 83, p. 122Dong, S., Roman, M., (2007) J. Am. Chem. Soc, 129, p. 13810Habibi, Y., Dufresne, A., (2008) Biomacromolecules, 9, p. 1974Jiang, L., Morelius, E., Zhang, J., Wolcott, M., Holbery, J., (2008) J. Composit. Mat, 42, p. 2629Cho, M.J., Park, B.D., (2011) J. Ind. Eng. Chem, 17, p. 36Lemes, A.P., Gonçalves, R., Moretti, A.M., Marcato, P.D., Durán, N., (2008) VII Meeting of SBPMat-2008 - VII Ann. Meeting of the Braz. Soc. Res. Mat., 566 B. , September, Guarujá-SP, Brasil AbstrTen, E., Turtle, J., Bahr, D., Jiang, L., Wolcott, M., (2010) Polymer, 51, p. 2652Capadona, J.R., Shanmuganathan, K., Trittschuh, S., Seidel, S., Rowan, S.J., Weder, C., (2009) Biomacromolecules, 10, p. 712Bendahou, A., Kaddami, H., Raihane, M., Habibi, Y., Dufresne, A., (2009) Rev. Roumaine Chim, 54, p. 571Garcia, N.L., Ribba, L., Dufresne, A., Aranguren, M.I., Goyanes, S., (2009) Macromol. Mat. Eng, 294, p. 169De Menezes, A.J., Siqueira, G., Curvelo, A.A.S., Dufresne, A., (2009) Polymer, 50, p. 4552Oksman, K., Mathew, A.P., Sain, M., (2009) Plastics Rubber Compos, 38, p. 396Morandi, G., Heath, L., Thielemans, W., (2009) Langmuir, 25, p. 8280Siqueira, G., Abdillahi, H., Brás, J., Dufresne, A., (2010) Cellulose, 17, pp. 289-298Kvien, I., Tanem, B.S., Oksman, K., (2005) Biomacromolecules, 6, p. 3160Pandey, J.K., Lee, C.S., Ahn, S.H., (2010) J.. Appl. Polym. Sci, 115, p. 2493Liu, D.Y., Yuan, X.W., Bhattacharyya, D., Easteal, A.J., (2010) Express Polym. Lett, 4, p. 26Shanmuganathan, K., Capadona, J.R., Rowan, S.J., Weder, C., (2010) J. Mat. Chem, 20, p. 180Mikkonen, K.S., Mathew, A.P., Pirkkalainen, K., Serimaa, R., Xu, C., Willfor, S., Oksman, S., Tenkanen, K., (2010) Cellulose, 17, pp. 69-81De Mesquita, J.C., Donnici, C.L., Pereira, F.V., (2010) Biomacromolecules, 11, p. 473Auad, M.L., Mosiewicki, M.A., Richardson, T., Aranguren, M.I., Marcovich, N.E., (2010) J. Appl. Polym. Sci, 115, p. 1215Mosiewicki, M.A., Wik, V.M., Aranguren, M.I., (2011) Plastic Res. Online, pp. 1-2. , 10.1002/spepro.003617Wik, V.M., Aranguren, M.I., Mosiewicki, M.A., (2011) Polym. Eng. Sci, , DOI: 10.1002/pen.21939Rusli, R., Shanmuganathan, K., Rowan, S.J., Weder, C., Eichhorn, S.J., (2011) Biomacromolecules, 12, p. 1363Liu, H., Liu, D., Yao, F., Wu, Q., (2010) Bioresource Technol, 101, p. 5685Dufresne, A., (2010) Molecules, 15, p. 4111Siqueira, G., Tapin-Lingua, S., Bras, J., Perez, D.S., Dufresne, A., (2011) Cellulose, 18, p. 57Gardner, D.J., (2011) Wood Fiber Sci, 43, p. 1Wang, D., Li, G., Huang, Y., (2004) Faming Zhuanli Shenqing Gongkai Shuomingshu, , Patent CN 1491976 A 20040428Roman, M., Dong, S., Hirani, A.A., Lee, Y.W., 235th ACS national meeting (2008) Abstr. CELL-030, , New Orleans, LA, United StatesHirani, A., (2009) Biomedical Engineering and Sciences, , Master of Science Thesis, Virginia Polytechnic Institute and State UniversityWang, H., Roman, M., (2011) Biomacromolecules, 12, p. 1585Jackson, J.K., Letchford, K., Wasserman, B.Z., Ye, L., Hamad, W.Y., Burt, H.M., (2011) Inter. J. Nanomed, 6, p. 321Postek, M.T., Vladar, A., Dagata, J., Farkas, N., Ming, B., Wagner, R., Raman, A., Beecher, J., (2011) Meas. Sci. Technol, 22, p. 024005Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y., (2005) Bioresource Technol, 96, p. 1959Leistritz, F.L., Senechal, D.M., Stower, M.D., McDonald, W.F., Safron, C.M., Hodur, N.M., (2006) Agribussines and Applied Economic Report No 590, , http://ageconsearch.umn.edu/handle/23500Winter, W.T., (2007) Div. Cell. Renew. Mat., , 233rd ACS Nat. Meeting, Chicago, Il. MarchDurán, N., Lemes, A.P., Durán, M., Marcato, P.D., Freer, J., Baeza, J., Franco, H., (2010) Intern. Conf. Food Agric. Appl. Nanotechnol (NanoAgri-2010), , São Carlos, S.P., BrazilFranco, H., Mendonça, R.T., Marcato, P.D., Durán Freer, J.N., Baeza, J., (2011) Bioresource Technol SubmittedOksman, K., Etang, J.A., Mathew, A.P., Jonoobi, M., (2011) Biomass Bioener, 35, p. 146Chen, Y., Stipanovic, A.J., Winter, W.T., Wilson, D.B., Kim, Y.J., (2007) Cellulose, 14, p. 283Goodrich, J.D.F., Winter, W.T., (2007) Biomacromolecules, 8, p. 252Winandy, J.E., Rudie, A.W., Williams, R.S., Wegner, T.H., (2008) Forest Prod. J, 58, p. 8(2009) Energy Biomass Program, , http://www1.eere.energy.gov/biomass/pdfs/biomass_deep_dive_pir.pdf, US-DEBP-2009: US. Depart., September(2010) Novozymes-2010, , http://www.novozymes.com/en/MainStructure/PressAndPublications/Newsitems/ 2010/Car+on+paper+waste.htm(2011) Domtar and FPInnovations, , http://www.fpinnovations.ca/pdfs/BinderEn.pdf, Assessed in May 14Chirat, C., Lachenal, D., Dufresne, A., (2010) Cellulose Chem. Technol, 44, p. 59Berrocal, A., Baeza, J., Rodriguez, J., Espinosa, M., Freer, J., (2004) J. Chilean Chem. Soc, 49, p. 25
    corecore