22 research outputs found

    ProtRepeatsDB: a database of amino acid repeats in genomes

    Get PDF
    BACKGROUND: Genome wide and cross species comparisons of amino acid repeats is an intriguing problem in biology mainly due to the highly polymorphic nature and diverse functions of amino acid repeats. Innate protein repeats constitute vital functional and structural regions in proteins. Repeats are of great consequence in evolution of proteins, as evident from analysis of repeats in different organisms. In the post genomic era, availability of protein sequences encoded in different genomes provides a unique opportunity to perform large scale comparative studies of amino acid repeats. ProtRepeatsDB is a relational database of perfect and mismatch repeats, access to which is designed as a resource and collection of tools for detection and cross species comparisons of different types of amino acid repeats. DESCRIPTION: ProtRepeatsDB (v1.2) consists of perfect as well as mismatch amino acid repeats in the protein sequences of 141 organisms, the genomes of which are now available. The web interface of ProtRepeatsDB consists of different tools to perform repeat s; based on protein IDs, organism name, repeat sequences, and keywords as in FASTA headers, size, frequency, gene ontology (GO) annotation IDs and regular expressions (REGEXP) describing repeats. These tools also allow formulation of a variety of simple, complex and logical queries to facilitate mining and large-scale cross-species comparisons of amino acid repeats. In addition to this, the database also contains sequence analysis tools to determine repeats in user input sequences. CONCLUSION: ProtRepeatsDB is a multi-organism database of different types of amino acid repeats present in proteins. It integrates useful tools to perform genome wide queries for rapid screening and identification of amino acid repeats and facilitates comparative and evolutionary studies of the repeats. The database is useful for identification of species or organism specific repeat markers, interspecies variations and polymorphism

    Prognostically relevant gene signatures of high-grade serous ovarian carcinoma

    Get PDF
    Because of the high risk of recurrence in high-grade serous ovarian carcinoma (HGS-OvCa), the development of outcome predictors could be valuable for patient stratification. Using the catalog of The Cancer Genome Atlas (TCGA), we developed subtype and survival gene expression signatures, which, when combined, provide a prognostic model of HGS-OvCa classification, named “Classification of Ovarian Cancer” (CLOVAR). We validated CLOVAR on an independent dataset consisting of 879 HGS-OvCa expression profiles. The worst outcome group, accounting for 23% of all cases, was associated with a median survival of 23 months and a platinum resistance rate of 63%, versus a median survival of 46 months and platinum resistance rate of 23% in other cases. Associating the outcome prediction model with BRCA1/BRCA2 mutation status, residual disease after surgery, and disease stage further optimized outcome classification. Ovarian cancer is a disease in urgent need of more effective therapies. The spectrum of outcomes observed here and their association with CLOVAR signatures suggests variations in underlying tumor biology. Prospective validation of the CLOVAR model in the context of additional prognostic variables may provide a rationale for optimal combination of patient and treatment regimens

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    p150 represses c-MYC expression.

    No full text
    <p>(A) Left - overexpression of p150 results in reduced c-MYC expression in HOSE cells shown by quantitative RT PCR. Right – immunoblotting for c-MYC. (B) Left - siRNA-knockdown of endogenous SALL2 in HOSE cells leads to increased c-MYC expression by quantitative RT PCR. Right - immunoblotting for c-MYC. (C) Left - Human c-MYC promoter region and luciferase reporters used in promoter activity assays. The NHE region (−142 to −100) including p150 consensus binding sites (underlined) was deleted in the reporter myc-Luc-ΔNHE. Right - siRNA to SALL2 in HOSE cells results in increased expression of myc-Luc but has no effect on myc-Luc-ΔNHE. (D) Expression of exogenous p150 in p150-deficient RMUGS ovarian cancer cells leads to decreased expression of the reporter myc-Luc. All histograms are based on triplicate determinations. * and ** denote p<0.05 and p<0.01, respectively, comparing means of experimental and control.</p

    SALL2 by c-MYC expression scatterplots for cancer types in The Cancer Genome Atlas.

    No full text
    <p>(A) OVCA - ovarian serous cystadenocarcinoma. (B) GBM – glioblastoma multiforme. (C ) BRCA – breast invasive carcinoma. (D) LUSC – lung squamous cell carcinoma. n = number of samples; r = Pearson correlation coefficient; p = p-value of the correlation. The lines shown are those of best fit.</p
    corecore