733 research outputs found

    Transferring the quantum state of electrons across a Fermi sea with Coulomb interaction

    Full text link
    The Coulomb interaction generally limits the quantum propagation of electrons. However, it can also provide a mechanism to transfer their quantum state over larger distances. Here, we demonstrate such a form of teleportation, across a metallic island within which the electrons are trapped much longer than their quantum lifetime. This effect originates from the low temperature freezing of the island's charge QQ which, in the presence of a single connected electronic channel, enforces a one-to-one correspondence between incoming and outgoing electrons. Such high-fidelity quantum state imprinting is established between well-separated injection and emission locations, through two-path interferences in the integer quantum Hall regime. The added electron quantum phase of 2πQ/e2\pi Q/e can allow for strong and decoherence-free entanglement of propagating electrons, and notably of flying qubits

    PO-0638: Adaptive dose painting by numbers for head and neck cancer: interim analysis of a randomised trial

    Get PDF
    International audience1. Recherches sur le Fayuan zayuan yuanshi ji de Sengyou (445-518), première anthologie de rites bouddhiques (suite : le contenu des juan 4 et 5) Notre travail de reconstruction du Fayuan zayuan yuanshi ji 法苑雜緣原始集 (Anthologie [pour comprendre] le commencement et l’origine de diverses [pratiques] dans le jardin des devoirs ; ci-après Fayuan) de Sengyou 僧祐 (445-518) nous a amenés cette année à nous pencher sur les 22 premiers titres de la section sur le saṃgha (Sengbao 僧寶, « Le joyau de la Loi ..

    Twenty-four-hour ambulatory blood pressure monitoring efficacy of perindopril/indapamide first-line combination in hypertensive patients: the REASON study

    Get PDF
    Background: Circadian blood pressure (BP) measurements provide more information on hypertensive complications than office BP measurements. The purpose of this study was to analyze the efficacy of the first-line combination of perindopril 2 mg plus indapamide 0.625 mg versus atenolol 50 mg on BP parameters and variability over 24 h in patients with hypertension. Methods: A double-blind, randomized, controlled, 12-month study comparing perindopril/indapamide and atenolol was performed in 201 patients (age 55.0 years) with uncomplicated sustained essential hypertension. Ambulatory BP measurements (ABPM) were done every 15 min over 24 h. Results: After 1 year of treatment, the decrease in systolic BP was significantly greater for perindopril/indapamide than for atenolol during the entire 24-h period (-13.8 ν −9.2 mm Hg), the daytime and the nighttime periods (P < .01). Diastolic blood pressure (DBP) variations were comparable for the two groups (−7.2 ν −8.3 mm Hg, NS). Pulse pressure (PP) reduction was also significantly greater for perindopril/indapamide than for atenolol (for the whole 24 h, −6.6 ν −0.9 mm Hg, P < .001). The through to peak (T/P) BP ratio and the smoothness index were comparable in the two groups for DBP. For systolic blood pressure (SBP), higher values of the T/P ratio (0.80 ν 0.59) and the smoothness index (1.45 ν 0.98; P < .02) were achieved for the perindopril/indapamide combination than for atenolol. Conclusions: The perindopril/indapamide first-line combination decreased SBP and PP more effectively than atenolol. Moreover, the BP control effect was smooth and consistent throughout the 24-h dosing interval and BP reduction variability was lower than the one induced by atenolo

    Regression of left ventricular mass in hypertensive patients treated with perindopril/indapamide as a first-line combination: The REASON echocardiography study

    Get PDF
    Background: Increase in left ventricular mass (LVM) may be linked to morbidity and mortality in hypertensive patients. Arterial stiffness, systolic blood pressure (BP), and pulse pressure (PP) seem to be the main determinants of LVM. The perindopril/indapamide combination normalizes systolic BP, PP, and arterial function to a greater extent than atenolol. The aim of this study was to compare the effects of perindopril (2 mg)/indapamide (0.625 mg) first-line combination with atenolol (50 mg) on LVM reduction in hypertensive patients. Methods: Two hundred fourteen patients with essential hypertension participating in the PREterax in Regression of Arterial Stiffness in a ContrOlled Double-BliNd (REASON), randomized, double-blind, parallel-group study, underwent M-mode two-dimensional-guided echocardiography. Results: Perindopril/indapamide and atenolol were both effective at brachial BP reduction during the 12-month period. The systolic BP reduction was significantly greater with perindopril/indapamide than with atenolol (−21.2 v −15.3 mm Hg), whereas the reduction in diastolic BP was similar between treatment groups (−12.1 v −11.3 mm Hg). Reduction in LVM was higher with perindopril/indapamide than with atenolol. The between-group difference was significant for LVM (−13.6 v −4.3 g, P = .027), LVM/body surface area (LVMI1, P = .032), and LVM/body height2.7 (LVMI2, P = .013). The 124 patients with LV hypertrophy at baseline showed greatest LVM regression (LVM: −22.5 v −8.9 g, P = .009; LVMI1, P = .031; LVMI2, P = .028). The reduction in LVM adjusted for brachial systolic BP and heart rate was still significantly greater with perindopril/indapamide than with atenolol. Conclusions: Treatment, based on a first-line perindopril/indapamide combination in hypertensive patients, was more effective than atenolol on regression of echocardiographic indices of LVM and LV hypertroph

    Necrostatin-1 Analogues: Critical Issues on the Specificity, Activity and In Vivo Use in Experimental Disease Models

    Get PDF
    Necrostatin-1 (Nec-1) is widely used in disease models to examine the contribution of receptor-interacting protein kinase (RIPK) 1 in cell death and inflammation. We studied three Nec-1 analogs: Nec-1, the active inhibitor of RIPK1, Nec-1 inactive (Nec-1i), its inactive variant, and Nec-1 stable (Nec-1s), its more stable variant. We report that Nec-1 is identical to methyl-thiohydantoin-tryptophan, an inhibitor of the potent immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO). Both Nec-1 and Nec-1i inhibited human IDO, but Nec-1s did not, as predicted by molecular modeling. Therefore, Nec-1s is a more specific RIPK1 inhibitor lacking the IDO-targeting effect. Next, although Nec-1i was ∼100 × less effective than Nec-1 in inhibiting human RIPK1 kinase activity in vitro, it was only 10 times less potent than Nec-1 and Nec-1s in a mouse necroptosis assay and became even equipotent at high concentrations. Along the same line, in vivo, high doses of Nec-1, Nec-1i and Nec-1s prevented tumor necrosis factor (TNF)-induced mortality equally well, excluding the use of Nec-1i as an inactive control. Paradoxically, low doses of Nec-1 or Nec-1i, but not Nec -1s, even sensitized mice to TNF-induced mortality. Importantly, Nec-1s did not exhibit this low dose toxicity, stressing again the preferred use of Nec-1s in vivo. Our findings have important implications for the interpretation of Nec-1-based data in experimental disease models

    Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer

    Get PDF
    Introduction Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach. Methods Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39). Results Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1). Conclusions These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response

    Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.

    Get PDF
    Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses
    corecore