6 research outputs found

    Interaction with surrounding normal epithelial cells influences signalling pathways and behaviour of Src-transformed cells

    Get PDF
    At the initial stage of carcinogenesis, transformation occurs in a single cell within an epithelial sheet. However, it remains unknown what happens at the boundary between normal and transformed cells. Using Madin-Darby canine kidney (MDCK) cells transformed with temperature-sensitive v-Src, we have examined the interface between normal and Src-transformed epithelial cells. We show that Src-transformed cells are apically extruded when surrounded by normal cells, but not when Src cells alone are cultured, suggesting that apical extrusion occurs in a cell-context-dependent manner. We also observe apical extrusion of Src-transformed cells in the enveloping layer of zebrafish gastrula embryos. When Src-transformed MDCK cells are surrounded by normal MDCK cells, myosin-II and focal adhesion kinase (FAK) are activated in Src cells, which further activate downstream mitogen-activated protein kinase (MAPK). Importantly, activation of these signalling pathways depends on the presence of surrounding normal cells and plays a crucial role in apical extrusion of Src cells. Collectively, these results indicate that interaction with surrounding normal epithelial cells influences the signalling pathways and behaviour of Src-transformed cells

    Distinct timing of neutrophil spreading and stiffening during phagocytosis

    No full text
    International audiencePhagocytic cells form the first line of defense in an organism, engulfing microbial pathogens. Phagocytosis involves cell mechanical changes that are not yet well understood. Understanding these mechanical modifications promises to shed light on the immune processes that trigger pathological complications. Previous studies showed that phagocytes undergo a sequence of spreading events around their target followed by an increase in cell tension. Seemingly in contradiction, other studies observed an increase in cell tension concomitant with membrane expansion. Even though phagocytes are viscoelastic, few studies have quantified viscous changes during phagocytosis. It is also unclear whether cell lines behave mechanically similarly to primary neutrophils. We addressed the question of simultaneous versus sequential spreading and mechanical changes during phagocytosis by using immunoglobulin-G-coated 8-and 20-mm-diameter beads as targets. We used a micropipettebased single-cell rheometer to monitor viscoelastic properties during phagocytosis by both neutrophil-like PLB cells and primary human neutrophils. We show that the faster expansion of PLB cells on larger beads is a geometrical effect reflecting a constant advancing speed of the phagocytic cup. Cells become stiffer on 20-than on 8-mm beads, and the relative timing of spreading and stiffening of PLB cells depends on target size: on larger beads, stiffening starts before maximal spreading area is reached but ends after reaching maximal area. On smaller beads, the stiffness begins to increase after cells have engulfed the bead. Similar to PLB cells, primary cells become stiffer on larger beads but start spreading and stiffen faster, and the stiffening begins before the end of spreading on both bead sizes. Our results show that mechanical changes in phagocytes are not a direct consequence of cell spreading and that models of phagocytosis should be amended to account for causes of cell stiffening other than membrane expansion

    Role of the phospholipid binding sites, PX of p47 phox and PB region of Rac1, in the formation of the phagocyte NADPH oxidase complex NOX2

    No full text
    In phagocytes, superoxide anion (O2 •-), the precursor of reactive oxygen species, is produced by the NADPH oxidase complex to kill pathogens. Phagocyte NADPH oxidase consists of the transmembrane cytochrome b558 (cyt b558) and four cytosolic components: p40 phox , p47 phox , p67 phox , and Rac1/2. The phagocyte activation by stimuli leads to activation of signal transduction pathways. This is followed by the translocation of cytosolic components to the membrane and their association with cyt b558 to form the active enzyme. To investigate the roles of membrane-interacting domains of the cytosolic proteins in the NADPH oxidase complex assembly and activity, we used giant unilamellar phospholipid vesicles (GUV). We also used the neutrophil-like cell line PLB-985 to investigate these roles under physiological conditions. We confirmed that the isolated proteins must be activated to bind to the membrane. We showed that their membrane binding was strengthened by the presence of the other cytosolic partners, with a key role for p47 phox. We also used a fused chimera consisting of p47 phox (aa 1-286), p67 phox (aa 1-212) and Rac1Q61L, as well as mutated versions in the p47 phox PX domain and the Rac polybasic region (PB). We showed that these two domains have a crucial role in the trimera membrane-binding and in the trimera assembly to cyt b558. They also have an impact on O2.-production in vitro and in cellulo: the PX domain strongly binding to GUV made of a mix of polar lipids; and the PB region strongly binding to the plasma membrane of neutrophils and resting PLB-985 cells.Idex Paris-Sacla

    Class I phosphoinositide 3-kinases control sustained NADPH oxidase activation in adherent neutrophils

    No full text
    Place: Oxford Publisher: Pergamon-Elsevier Science Ltd WOS:000551658300034Phagocytes, especially neutrophils, can produce reactive oxygen species (ROS), through the activation of the NADPH oxidase (NOX2). Although this enzyme is crucial for host-pathogen defense, ROS production by neutrophils can be harmful in several pathologies such as cardiovascular diseases or chronic pulmonary diseases. The ROS production by NOX2 involves the assembly of the cytosolic subunits (p67(phox), p47(phox), and p40(phox)) and Rac with the membrane subunits (gp91(phox) and p22(phox)). Many studies are devoted to the activation of NOX2. However, the mechanisms that cause NADPH oxidase deactivation and thus terminate ROS production are not well known. Here we investigated the ability of class I phosphoinositide 3-kinases (PI3Ks) to sustain NADPH oxidase activation. The NADPH oxidase activation was triggered by seeding neutrophil-like PLB-985 cells, or human neutrophils on immobilized fibrinogen. Adhesion of the neutrophils, mediated by beta 2 integrins, induced activation of the NADPH oxidase and translocation of the cytosolic subunits at the plasma membrane. Inhibition of class I PI3Ks, and especially PI3K beta, terminated ROS production. This deactivation of NOX2 is due to the release of the cytosolic subunits, p67(phox) and p47(phox) from the plasma membrane. Overexpression of an active form of Rac 1 did not prevent the drop of ROS production upon inhibition of class I PI3Ks. Moreover, the phosphorylation of p47(phox) at S328, a potential target of kinases activated by the PI3K pathway, was unchanged. Our results indicate that the experimental downregulation of class I PI3K products triggers the plasma membrane NADPH oxidase deactivation. Release of p47(phox) from the plasma membrane may involve its PX domains that bind PI3K products

    Casein Kinase 1 Is a Novel Negative Regulator of E-Cadherin-Based Cell-Cell Contacts▿ †

    No full text
    Cadherins are the most crucial membrane proteins for the formation of tight and compact cell-cell contacts. Cadherin-based cell-cell adhesions are dynamically established and/or disrupted during various physiological and pathological processes. However, the molecular mechanisms that regulate cell-cell contacts are not fully understood. In this paper, we report a novel functional role of casein kinase 1 (CK1) in the regulation of cell-cell contacts. Firstly, we observed that IC261, a specific inhibitor of CK1, stabilizes cadherin-based cell-cell contacts, whereas the overexpression of CK1 disrupts them. CK1 colocalizes with E-cadherin and phosphorylates the cytoplasmic domain of E-cadherin in vitro and in a cell culture system. We show that the major CK1 phosphorylation site of E-cadherin is serine 846, a highly conserved residue between classical cadherins. Constitutively phosphorylated E-cadherin (S846D) is unable to localize at cell-cell contacts and has decreased adhesive activity. Furthermore, phosphorylated E-cadherin (S846D) has weaker interactions with β-catenin and is internalized more efficiently than wild-type E-cadherin. These data indicate that CK1 is a novel negative regulator of cadherin-based cell-cell contacts

    The recruitment of p47phox and Rac2G12V at the phagosome is transient and phosphatidylserine-dependent

    Get PDF
    International audienceBackground information: During phagocytosis, neutrophils internalize pathogens in a phagosome and produce reactive oxygen species (ROS) by the NADPH oxidase to kill the pathogen. The cytosolic NADPH oxidase subunits p40phox, p47phox, p67phox and Rac2 translocate to the phagosomal membrane to participate in enzyme activation. The kinetics of this recruitment and the underlying signalling pathways are only partially understood. Anionic phospholipids, phosphatidylserine (PS) and phosphoinositides (PPI) provide important attachment site for numerous proteins, including several oxidase subunits. Results: We investigated the kinetics of p47phox and Rac2 phagosomal membrane recruitment. Both subunits are known to interact with anionic phospholipids; we therefore addressed the role of PS in this recruitment. Phagosomal accumulation of p47phox and Rac2 tagged with fluorescent proteins was analyzed by videomicroscopy. We used the C2 domain of lactadherin (lactC2) that interacts strongly and specifically with PS to monitor intracellular PS localization and to decrease PS accessibility. During phagocytosis of opsonized zymosan, p47phox and constitutively active Rac2G12V briefly translocated to the phagosomal membrane while ROS production continued for a longer period. However, in the presence of lactC2, Rac2G12V recruitment was inhibited and the kinetics of p47phox recruitment and detachment were delayed. A reduced phagosomal ROS production was also observed during the first seven minutes following the phagosome closure. Conclusions: These results suggest that p47phox and Rac2 accumulate only transiently at the phagosome at the onset of NADPH activity and detach from the phagosome before the end of ROS production. Furthermore, lactC2, by masking PS, interfered with the phagosomal recruitment of p47phox and Rac2 and disturbed NADPH oxidase activity. Thus, PS appears as a modulator of NADPH oxidase activation
    corecore