14 research outputs found

    An observer principle for general relativity

    Full text link
    We give a mathematical uniqueness theorem which in particular shows that symmetric tensors in general relativity are uniquely determined by their monomial functions on the light cone. Thus, for an observer to observe a tensor at an event in general relativity is to contract with the velocity vector of the observer, repeatedly to the rank of the tensor. Thus two symmetric tensors observed to be equal by all observers at a specific event are necessarily equal at that event.Comment: arXiv admin note: substantial text overlap with arXiv:0903.522

    Ultrasound-guided block of the brachial plexus at the humeral canal.

    No full text
    Conduction block of the brachial plexus block at the humeral canal, as described by Dupre, has certain clinical indications. The aim of this preliminary study was to assess the feasibility of this technique under ultrasound guidance.Controlled Clinical TrialJournal Articleinfo:eu-repo/semantics/publishe

    Phosphodiesterase-4 influences the PKA phosphorylation status and membrane translocation of G-protein receptor kinase 2 (GRK2) in HEK-293β2 cells and cardiac myocytes

    No full text
    Membrane-recruitment of GRK2 (G-protein receptor kinase 2) provides a fundamental step in the desensitization process controlling GPCRs (G-protein-coupled receptors), such as the β(2)AR (β(2)-adrenergic receptor). In the present paper, we show that challenge of HEK-293β2 [human embryonic kidney cells stably overexpressing the FLAG-tagged β(2)AR–GFP (green fluorescent protein)] cells with the β-adrenoceptor agonist, isoprenaline, causes GRK2 to become phosphorylated by PKA (cAMP-dependent protein kinase). This action is facilitated when cAMP-specific PDE4 (phosphodiesterase-4) activity is selectively inactivated, either chemically with rolipram or by siRNA (small interfering RNA)-mediated knockdown of PDE4B and PDE4D. PDE4-selective inhibition by rolipram facilitates the isoprenaline-induced membrane translocation of GRK2, phosphorylation of the β(2)AR by GRK2, membrane translocation of β-arrestin and internalization of β(2)ARs. PDE4-selective inhibition also enhances the ability of isoprenaline to trigger the PKA phosphorylation of GRK2 in cardiac myocytes. In the absence of isoprenaline, rolipram-induced inhibition of PDE4 activity in HEK-293β2 cells acts to stimulate PKA phosphorylation of GRK2, with consequential effects on GRK2 membrane recruitment and GRK2-mediated phosphorylation of the β(2)AR. We propose that a key role for PDE4 enzymes is: (i) to gate the action of PKA on GRK2, influencing the rate of GRK2 phosphorylation of the β(2)AR and consequential recruitment of β-arrestin subsequent to β-adrenoceptor agonist challenge, and (ii) to protect GRK2 from inappropriate membrane recruitment in unstimulated cells through its phosphorylation by PKA in response to fluctuations in basal levels of cAMP

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    No full text
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PAM, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and pArg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM(-/-) patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
    corecore