58 research outputs found

    Automatic detection of optical signatures within and around floating Tonga - Fiji pumice rafts using MODIS, VIIRS, and OLCI Satellite Sensors

    Get PDF
    An underwater volcanic eruption off the Vava’u island group in Tonga on 7 August 2019 resulted in the creation of floating pumice on the ocean’s surface extending over an area of 150 km2. The pumice’s far-reaching effects from its origin in the Tonga region to Fiji and the methods of automatic detection using satellite imagery are described, making it possible to track the westward drift of the pumice raft over 43 days. Level 2 Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), Sentinel-3 Ocean and Land Color Instrument (OLCI), and Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) imagery of sea surface temperature, chlorophyll-a concentration, quasi-surface (i.e., Rayleigh-corrected) reflectance, and remote sensing reflectance were used to distinguish consolidated and fragmented rafts as well as discolored and mesotrophic waters. The rafts were detected by a 1 to 3.5 °C enhancement in the MODIS-derived “sea surface temperature” due to the emissivity difference of the raft material. Large plumes of discolored waters, characterized by higher satellite reflectance/backscattering of particles in the blue than surrounding waters (and corresponding to either submersed pumice or associated white minerals), were associated with the rafts. The discolored waters had relatively lower chlorophyll-a concentration, but this was artificial, resulting from the higher blue/red reflectance ratio caused by the reflective pumice particles. Mesotrophic waters were scarce in the region of the pumice rafts, presumably due to the absence of phytoplanktonic response to a silicium-rich pumice environment in these tropical oligotrophic environments. As beach accumulations around Pacific islands surrounded by coral shoals are a recurrent phenomenon that finds its origin far east in the ocean along the Tongan trench, monitoring the events from space, as demonstrated for the 7 August 2019 eruption, might help mitigate their potential economic impacts

    The use of Copernicus Marine Service products to describe the state of the Tropical Western Pacific Ocean around the Islands: a case study

    Get PDF
    Fiji served as President of the UN General Assembly in 2017, linking climate (SDG13) and ocean (SDG14) as the foundation of blue economies for island and coastal states around the world. The resulting United Nations Oceans outcome statement stressed “the importance of enhancing understanding of the health and role of our ocean and the stressors on its ecosystems, including through assessments on the state of the ocean, based on science and on traditional knowledge systems. We also stress the need to further increase marine scientific research to inform and support decision-making, and to promote knowledge hubs and networks to enhance the sharing of scientific data, best practices and ‘know-how.’” (UN, 2017). The Copernicus Marine Service Atlas for the Pacific Ocean States goes beyond the unique compilation of CMIP3 climate model projections and data tools compiled by the Pacific Climate Change Science Program (PCCSP, 2011, 2014). A complete overview of tropical Pacific observing network is available in the WMO publication library (GCOS, 2014a, 2014b). Our study focuses on the application of the available CMEMS products to the Pacific domain defined by PCCSP. As president of COP23, Prime Minister Frank Bainimarama has emphasized the importance of the climate and ocean connection and the need to protect ocean health to protect the planet: ‘We are all in the same canoe’ (https://cop23.com.fj/fijian-prime-minister-cop23-president-remarks-assuming-presidency-cop23/). The Copernicus Marine Service Atlas for Pacific Ocean States compiled by the author team responds directly to Fiji’s requests at the 2017 United Nation Oceans for SDG 14, life below water and the 2017 COP23 for SDG13, climate action which goes beyond the Pacific

    Impact of ashes from the 2022 Tonga volcanic eruption on satellite ocean color signatures

    Get PDF
    A powerful eruption within the Hunga Tonga-Hunga Ha’apai (HTHH) volcano (20.64°S, 175.19°W) in the Kingdom of Tonga, occurred on 15 January 2022. The volcanic blast was enormous, leading many scientists to investigate the full impact and magnitude of this event via satellite observations. In this study, we describe a new ocean color signature from a discolored water patch created by the HTHH eruption using NASA and CMEMS products of satellite-derived biological and optical properties. Elevated surface chlorophyll-a concentration (Chl-a) between 0.15 to 2.7 mg.m-3 was not associated with phytoplankton growth, but to basalt-andesitic ash material expelled by the volcano and into the ocean, which resulted in erroneous Chl-a estimates. Distribution of the patch over time was aligned with CMEMS ocean currents for 19 days. The gradual decrease of light attenuation or diffuse attenuation coefficient for downward irradiance at 490 nm, Kd(490), was interpreted as due to the sinking of ash particles with time. It is suggested that due to high porosity of 30-40%, a density close to that of seawater, ash particles stay suspended in the water column for more than 10 days with sustained high values of satellite-derived Chl-a, Kd(490), and particulate backscattering coefficient at 443 nm. The high attenuation of light due to ash, reducing the penetration depth to less than 10 meters during the first period after the eruption may have had implications on ecological processes and biogeochemical cycles in Tongan waters

    Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM)

    No full text
    International audienceThe accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a

    Unsupervised Optical Classification of the Seabed Color in Shallow Oligotrophic Waters from Sentinel-2 Images: A Case Study in the Voh-Koné-Pouembout Lagoon (New Caledonia)

    No full text
    International audienceMonitoring chlorophyll-a concentration or turbidity is crucial for understanding and managing oligo- to mesotrophic coastal waters quality. However, mapping bio-optical components from space in such shallow settings remains challenging because of the strong interference of the complex bathymetry and various seabed colors. Correcting the total satellite reflectance signal from the seabed reflectance in ocean color with high resolution sensors is promising. This article shows how unsupervised clustering approaches can be applied to Sentinel-2 images to classify seabed colors in shallow waters of a tropical oligotrophic lagoon in New Caledonia. Data processing included Lyzenga correction for estimating the water column reflectance, optical spectra standardization for attenuating water absorption effects and clustering using the unsupervised k-means method. This methodological approach was applied on the 497, 560, 664 and 704 nm optical bands of the selected Sentinel-2 image. When applied on non-standardized data, our unsupervised classification retrieved three seafloor clusters, whereas five seafloor clusters could be retrieved using standardized data. For each of these two trials, the computed membership values explained more than 75% of the inertia in each Sentinel-2 wavelength band used for the clustering. However, the accuracy of the method was slightly improved when applied on standardized data. Confusion index mapping of the unsupervised clustering retrieved from these data emphasized the relevance and robustness of our methodological approach. Such an approach for seabed colors classification in optically complex shallow settings will be particularly helpful to improve remote sensing of biogeochemical indicators such as chlorophyll-a concentration and turbidity in fragile coastal environments

    Spectral diversity of phycoerythrins and diazotroph abundance in tropical waters

    No full text
    • 

    corecore