157 research outputs found

    Numerical simulation of flow, H2SO4 cycle and new particle formation in the CERN CLOUD chamber

    Get PDF
    To study the effect of galactic cosmic rays on aerosols and clouds, the Cosmic Leaving OUtdoor Droplets (CLOUD) project was established. Experiments are carried out at a 26 m3 tank at CERN (Switzerland). In the experiments, the effect of ionising particle radiation on H2SO4 particle formation and growth is investigated. To evaluate the experimental configuration, the experiment was simulated using a coupled multidimensional CFD – particle model (CLOUD-FPM). In the model the coupled fields of gas/vapour species, temperature, flow velocity and particle properties were computed to investigate the tank's mixing state and mixing times. Simulation results show that the mixing state of the tank's contents largely depends on the characteristics of the mixing fans and a 1-fan configuration, as used in first experiments, may not be sufficient to ensure a homogeneously mixed chamber. To mix the tank properly, 2 fans are necessary. The 1/e response times for instantaneous changes of wall temperature and saturation ratio inside the chamber were found to be in the order of few minutes. Particle nucleation and growth was also simulated and particle number size distribution properties of the freshly nucleated particles (particle number, mean size, standard deviation of the assumed log-normal distribution) were found to be mixed over the tank's volume similar to the gas species

    Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber

    Get PDF
    To study the effect of galactic cosmic rays on aerosols and clouds, the Cosmics Leaving OUtdoor Droplets (CLOUD) project was established. Experiments are carried out at a 26.1 m3 tank at CERN (Switzerland). In the experiments, the effect of ionizing radiation on H2SO4 particle formation and growth is investigated. To evaluate the experimental configuration, the experiment was simulated using a coupled multidimensional computational fluid dynamics (CFD) – particle model. In the model the coupled fields of gas/vapor species, temperature, flow velocity and particle properties were computed to investigate mixing state and mixing times of the CLOUD tank's contents. Simulation results show that a 1-fan configuration, as used in first experiments, may not be sufficient to ensure a homogeneously mixed chamber. To mix the tank properly, two fans and sufficiently high fan speeds are necessary. The 1/e response times for instantaneous changes of wall temperature and saturation ratio were found to be in the order of few minutes. Particle nucleation and growth was also simulated and particle number size distribution properties of the freshly nucleated particles (particle number, mean size, standard deviation of the assumed log-normal distribution) were found to be distributed over the tank's volume similar to the gas species

    Cluster Measurements at CLOUD using a High Resolution Ion Mobility Spectrometer - Mass Spectrometer Combination

    Get PDF
    Mass spectrometry is powerful tool for environmental and atmospheric chemistry analysis. Modern mass spectrometers demonstrate low detection limits, high sensitivity, and high resolving power. However, such high performance is not always enough to identify ambient ion clusters due to the clusters braking at the atmospheric pressure-to-vacuum interface of mass spectrometer. This study presents a high resolution ion mobility spectrometer-time-of-flight mass spectrometer (IMS-TOF) in the CLOUD experiment. This combination of orthogonal analytical techniques allows obtaining structural information in addition to mass-to-charge separation

    Molecular Steps of Neutral Sulfuric Acid and Dimethylamine Nucleation in CLOUD

    Get PDF
    We have run a set of experiments in the CLOUD chamber at CERN, Switzerland, studying the effect of dimethylamine (DMA) on sulfuric acid (SA)-water nucleation using a nitrate based Chemical Ionization Atmospheric Pressure ionization Time-Of-Flight Mass Spectrometer (CI-APi-TOF). Experiment was designed to produce neutral high m/z SA-DMA clusters in close to atmospherically relevant conditions to be detected and characterized by the CI-APi-TOF. We aimed in filling up the gap in measurement techniques from molecular level up to climatically relevant aerosol particles and thus improve our understanding of the role of sulfuric acid and DMA in atmospheric nucleation

    Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene

    Get PDF
    A new denuder-filter sampling technique has been used to investigate the gas/particle partitioning behaviour of the carbonyl products from the photooxidation of isoprene and 1,3,5-trimethylbenzene. A series of experiments was performed in two atmospheric simulation chambers at atmospheric pressure and ambient temperature in the presence of NOx and at a relative humidity of approximately 50%. The denuder and filter were both coated with the derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine (PFBHA) to enable the efficient collection of gas- and particle-phase carbonyls respectively. The tubes and filters were extracted and carbonyls identified as their oxime derivatives by GC-MS. The carbonyl products identified in the experiments accounted for around 5% and 10% of the mass of secondary organic aerosol formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene respectively. Experimental gas/particle partitioning coefficients were determined for a wide range of carbonyl products formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene and compared with the theoretical values based on standard absorptive partitioning theory. Photooxidation products with a single carbonyl moiety were not observed in the particle phase, but dicarbonyls, and in particular, glyoxal and methylglyoxal, exhibited gas/particle partitioning coefficients several orders of magnitude higher than expected theoretically. These findings support the importance of heterogeneous and particle-phase chemical reactions for SOA formation and growth during the atmospheric degradation of anthropogenic and biogenic hydrocarbons

    Spatial and Temporal Investigation of Dew Potential based on Long-Term Model Simulations in Iran

    Get PDF
    Since water shortage has been a serious challenge in Iran, long-term investigations of alternative water resources are vital. In this study, we performed long-term (1979–2018) model simulation at seven locations (costal, desert, mountain, and urban conditions) in Iran to investigate temporal and spatial variation of dew formation. The model was developed to simulate the dew formation (water and ice) based on the heat and mass balance equation with ECMWF-ERA-Interim (European Centre for Medium-Range Weather Forecasts–Re-Analysis) meteorological data as input. According to the model simulation, the maximum mean yearly cumulative dew yield (~65 L/m2) was observed in the mountain region in the north part of Iran with a yearly mean cumulative dew yield was ~36 L/m2. The dew yield showed a clear seasonal variation at all selected locations with maximum yields in winter (mean monthly cumulative 3–8 L/m2 depending on the location). Here we showed that dew formation is frequent in northern Iran. In other areas, where there was suffering from water-stress (southern and central parts of Iran), dew can be a utilized as an alternative source of water. The dew yield during 2001–2014 was lower than the overall mean during the past 40 years a result of climate change in Iran.Since water shortage has been a serious challenge in Iran, long-term investigations of alternative water resources are vital. In this study, we performed long-term (1979-2018) model simulation at seven locations (costal, desert, mountain, and urban conditions) in Iran to investigate temporal and spatial variation of dew formation. The model was developed to simulate the dew formation (water and ice) based on the heat and mass balance equation with ECMWF-ERA-Interim (European Centre for Medium-Range Weather Forecasts-Re-Analysis) meteorological data as input. According to the model simulation, the maximum mean yearly cumulative dew yield (similar to 65 L/m(2)) was observed in the mountain region in the north part of Iran with a yearly mean cumulative dew yield was similar to 36 L/m(2). The dew yield showed a clear seasonal variation at all selected locations with maximum yields in winter (mean monthly cumulative 3-8 L/m(2) depending on the location). Here we showed that dew formation is frequent in northern Iran. In other areas, where there was suffering from water-stress (southern and central parts of Iran), dew can be a utilized as an alternative source of water. The dew yield during 2001-2014 was lower than the overall mean during the past 40 years a result of climate change in Iran.Peer reviewe

    Nucleation of H_2SO_4 and oxidized organics in CLOUD experiment

    Get PDF
    The research of atmospheric new particle formation has proceeded lately as the role of sulphuric acid has been established. Still, the roles of other atmospheric compounds in nucleation remain largely unclear. To clarify the first steps of atmospheric new particle formation extensive nucleation experiments were performed in CLOUD chamber in 2012. Especially the role of oxidations products of Îą-pinene was studied in detail. The experiments provided new information about the part of oxidized organics in nucleation

    Spatial and Temporal Investigation of Dew Potential based on Long-Term Model Simulations in Iran

    Get PDF
    Since water shortage has been a serious challenge in Iran, long-term investigations of alternative water resources are vital. In this study, we performed long-term (1979–2018) model simulation at seven locations (costal, desert, mountain, and urban conditions) in Iran to investigate temporal and spatial variation of dew formation. The model was developed to simulate the dew formation (water and ice) based on the heat and mass balance equation with ECMWF-ERA-Interim (European Centre for Medium-Range Weather Forecasts–Re-Analysis) meteorological data as input. According to the model simulation, the maximum mean yearly cumulative dew yield (~65 L/m2) was observed in the mountain region in the north part of Iran with a yearly mean cumulative dew yield was ~36 L/m2. The dew yield showed a clear seasonal variation at all selected locations with maximum yields in winter (mean monthly cumulative 3–8 L/m2 depending on the location). Here we showed that dew formation is frequent in northern Iran. In other areas, where there was suffering from water-stress (southern and central parts of Iran), dew can be a utilized as an alternative source of water. The dew yield during 2001–2014 was lower than the overall mean during the past 40 years a result of climate change in Iran

    Charged and Neutral Binary Nucleation of Sulfuric Acid in Free Troposphere Conditions

    Get PDF
    We present a data set of binary nucleation of sulfuric acid and water, measured in the CLOUD chamber at CERN during the CLOUD3 and CLOUD5 campaigns. Four parameters have been varied to cover neutral and ion-induced binary nucleation processes: Sulfuric acid concentration (1e5 to 1e8 molecules per cm^(−3)), relative humidity (10% to 80%), temperature (208-293K) and ion concentration (0-4000 ions per cm^(−3)). In addition, classical nucleation theory implemented with hydrates and ion induced nucleation is compared with the data set. Our model and data are also compared with nucleation rates measured at Puy de Dome in the tropopause

    Measurements of cluster ions using a nano radial DMA and a particle size magnifier in CLOUD

    Get PDF
    We built a new instrumental setup for measuring ion distributions in the size range [1.3-6] nm. The implementation of an high transmission inlet increased the total transmission efficiency to more than 6% at 1.47 nm mobility equivalent diameter, allowing the detection of ions at atmospheric concentrations. The size resolution of our measurements is as high as 6. We characterized the instrument in the laboratory and carried out measurements during the CLOUD7 campaign. We compared the results obtained with the Neutral cluster and Air Ion spectrometer finding very good agreement
    • …
    corecore