282 research outputs found

    Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison

    Get PDF
    We report comprehensive, demonstrably contaminant-free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion-induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface-time of flight-mass spectrometer was used to detect contaminants in charged clusters and to identify runs free of any contaminants. Four parameters were varied to cover ambient conditions: sulfuric acid concentration (10^5 to 10^9  mol cm^(−3)), relative humidity (11% to 58%), temperature (207 K to 299 K), and total ion concentration (0 to 6800 ions cm^(−3)). Formation rates were directly measured with novel instruments at sizes close to the critical cluster size (mobility size of 1.3 nm to 3.2 nm). We compare our results with predictions from Classical Nucleation Theory normalized by Quantum Chemical calculation (QC-normalized CNT), which is described in a companion paper. The formation rates predicted by the QC-normalized CNT were extended from critical cluster sizes to measured sizes using the UHMA2 sectional particle microphysics model. Our results show, for the first time, good agreement between predicted and measured particle formation rates for the binary (neutral and ion-induced) sulfuric acid-water system. Formation rates increase with RH, sulfuric acid, and ion concentrations and decrease with temperature at fixed RH and sulfuric acid concentration. Under atmospheric conditions, neutral particle formation dominates at low temperatures, while ion-induced particle formation dominates at higher temperatures. The good agreement between the theory and our comprehensive data set gives confidence in using the QC-normalized CNT as a powerful tool to study neutral and ion-induced binary particle formation in atmospheric modeling

    Cluster Measurements at CLOUD using a High Resolution Ion Mobility Spectrometer - Mass Spectrometer Combination

    Get PDF
    Mass spectrometry is powerful tool for environmental and atmospheric chemistry analysis. Modern mass spectrometers demonstrate low detection limits, high sensitivity, and high resolving power. However, such high performance is not always enough to identify ambient ion clusters due to the clusters braking at the atmospheric pressure-to-vacuum interface of mass spectrometer. This study presents a high resolution ion mobility spectrometer-time-of-flight mass spectrometer (IMS-TOF) in the CLOUD experiment. This combination of orthogonal analytical techniques allows obtaining structural information in addition to mass-to-charge separation

    Molecular Steps of Neutral Sulfuric Acid and Dimethylamine Nucleation in CLOUD

    Get PDF
    We have run a set of experiments in the CLOUD chamber at CERN, Switzerland, studying the effect of dimethylamine (DMA) on sulfuric acid (SA)-water nucleation using a nitrate based Chemical Ionization Atmospheric Pressure ionization Time-Of-Flight Mass Spectrometer (CI-APi-TOF). Experiment was designed to produce neutral high m/z SA-DMA clusters in close to atmospherically relevant conditions to be detected and characterized by the CI-APi-TOF. We aimed in filling up the gap in measurement techniques from molecular level up to climatically relevant aerosol particles and thus improve our understanding of the role of sulfuric acid and DMA in atmospheric nucleation

    Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene

    Get PDF
    A new denuder-filter sampling technique has been used to investigate the gas/particle partitioning behaviour of the carbonyl products from the photooxidation of isoprene and 1,3,5-trimethylbenzene. A series of experiments was performed in two atmospheric simulation chambers at atmospheric pressure and ambient temperature in the presence of NOx and at a relative humidity of approximately 50%. The denuder and filter were both coated with the derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine (PFBHA) to enable the efficient collection of gas- and particle-phase carbonyls respectively. The tubes and filters were extracted and carbonyls identified as their oxime derivatives by GC-MS. The carbonyl products identified in the experiments accounted for around 5% and 10% of the mass of secondary organic aerosol formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene respectively. Experimental gas/particle partitioning coefficients were determined for a wide range of carbonyl products formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene and compared with the theoretical values based on standard absorptive partitioning theory. Photooxidation products with a single carbonyl moiety were not observed in the particle phase, but dicarbonyls, and in particular, glyoxal and methylglyoxal, exhibited gas/particle partitioning coefficients several orders of magnitude higher than expected theoretically. These findings support the importance of heterogeneous and particle-phase chemical reactions for SOA formation and growth during the atmospheric degradation of anthropogenic and biogenic hydrocarbons

    Relating hygroscopicity and composition of organic aerosol particulate matter

    Get PDF
    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "κorg" parameter, and f44 was determined and is given by κorg=2.2×f44−0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass

    Nucleation of H_2SO_4 and oxidized organics in CLOUD experiment

    Get PDF
    The research of atmospheric new particle formation has proceeded lately as the role of sulphuric acid has been established. Still, the roles of other atmospheric compounds in nucleation remain largely unclear. To clarify the first steps of atmospheric new particle formation extensive nucleation experiments were performed in CLOUD chamber in 2012. Especially the role of oxidations products of α-pinene was studied in detail. The experiments provided new information about the part of oxidized organics in nucleation

    Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland

    Get PDF
    Data from measurements of hygroscopic growth of submicrometer aerosol with a hygroscopicity tandem differential mobility analyzer (HTDMA) during four campaigns at the high alpine research station Jungfraujoch, Switzerland, are presented. The campaigns took place during the years 2000, 2002, 2004 and 2005, each lasting approximately one month. Hygroscopic growth factors (<i>GF</i>, i.e. the relative change in particle diameter from dry diameter, <i>D</i><sub>0</sub>, to diameter measured at higher relative humidity, RH) are presented for three distinct air mass types, namely for: 1) free tropospheric winter conditions, 2) planetary boundary layer influenced air masses (during a summer period) and 3) Saharan dust events (SDE). The <i>GF</i> values at 85% RH (<i>D</i><sub>0</sub>=100 nm) were 1.40±0.11 and 1.29±0.08 for the first two situations while for SDE a bimodal <i>GF</i> distribution was often found. No phase changes were observed when the RH was varied between 10–90%, and the continuous water uptake could be well described with a single-parameter empirical model. The frequency distributions of the average hygroscopic growth factors and the width of the retrieved growth factor distributions (indicating whether the aerosol is internally or externally mixed) are presented, which can be used for modeling purposes. <br><br> Measurements of size resolved chemical composition were performed with an aerosol mass spectrometer in parallel to the <i>GF</i> measurements. This made it possible to estimate the apparent ensemble mean <i>GF</i> of the organics (<i>GF</i><sub>org</sub>) using inverse ZSR (Zdanovskii-Stokes-Robinson) modeling. <i>GF</i><sub>org</sub> was found to be ~1.20 at <i>a</i><sub>w</sub>=0.85, which is at the upper end of previous laboratory and field data though still in agreement with the highly aged and oxidized nature of the Jungfraujoch aerosol

    Spatial and Temporal Investigation of Dew Potential based on Long-Term Model Simulations in Iran

    Get PDF
    Since water shortage has been a serious challenge in Iran, long-term investigations of alternative water resources are vital. In this study, we performed long-term (1979–2018) model simulation at seven locations (costal, desert, mountain, and urban conditions) in Iran to investigate temporal and spatial variation of dew formation. The model was developed to simulate the dew formation (water and ice) based on the heat and mass balance equation with ECMWF-ERA-Interim (European Centre for Medium-Range Weather Forecasts–Re-Analysis) meteorological data as input. According to the model simulation, the maximum mean yearly cumulative dew yield (~65 L/m2) was observed in the mountain region in the north part of Iran with a yearly mean cumulative dew yield was ~36 L/m2. The dew yield showed a clear seasonal variation at all selected locations with maximum yields in winter (mean monthly cumulative 3–8 L/m2 depending on the location). Here we showed that dew formation is frequent in northern Iran. In other areas, where there was suffering from water-stress (southern and central parts of Iran), dew can be a utilized as an alternative source of water. The dew yield during 2001–2014 was lower than the overall mean during the past 40 years a result of climate change in Iran
    corecore