147 research outputs found

    The Topology of Foliations Formed by the Generic K-Orbits of a Subclass of the Indecomposable MD5-Groups

    Full text link
    The present paper is a continuation of [13], [14] of the authors. Specifically, the paper considers the MD5-foliations associated to connected and simply connected MD5-groups such that their Lie algebras have 4-dimensional commutative derived ideal. In the paper, we give the topological classification of all considered MD5-foliations. A description of these foliations by certain fibrations or suitable actions of R2\mathbb{R}^{2} and the Connes' C*-algebras of the foliations which come from fibrations are also given in the paper.Comment: 20 pages, no figur

    n-Gram-based text compression

    Get PDF
    We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods.Web of Scienceart. no. 948364

    Unlocking the capabilities of explainable fewshot learning in remote sensing

    Full text link
    Recent advancements have significantly improved the efficiency and effectiveness of deep learning methods for imagebased remote sensing tasks. However, the requirement for large amounts of labeled data can limit the applicability of deep neural networks to existing remote sensing datasets. To overcome this challenge, fewshot learning has emerged as a valuable approach for enabling learning with limited data. While previous research has evaluated the effectiveness of fewshot learning methods on satellite based datasets, little attention has been paid to exploring the applications of these methods to datasets obtained from UAVs, which are increasingly used in remote sensing studies. In this review, we provide an up to date overview of both existing and newly proposed fewshot classification techniques, along with appropriate datasets that are used for both satellite based and UAV based data. Our systematic approach demonstrates that fewshot learning can effectively adapt to the broader and more diverse perspectives that UAVbased platforms can provide. We also evaluate some SOTA fewshot approaches on a UAV disaster scene classification dataset, yielding promising results. We emphasize the importance of integrating XAI techniques like attention maps and prototype analysis to increase the transparency, accountability, and trustworthiness of fewshot models for remote sensing. Key challenges and future research directions are identified, including tailored fewshot methods for UAVs, extending to unseen tasks like segmentation, and developing optimized XAI techniques suited for fewshot remote sensing problems. This review aims to provide researchers and practitioners with an improved understanding of fewshot learnings capabilities and limitations in remote sensing, while highlighting open problems to guide future progress in efficient, reliable, and interpretable fewshot methods.Comment: Under review, once the paper is accepted, the copyright will be transferred to the corresponding journa

    WATT-EffNet: A Lightweight and Accurate Model for Classifying Aerial Disaster Images

    Full text link
    Incorporating deep learning (DL) classification models into unmanned aerial vehicles (UAVs) can significantly augment search-and-rescue operations and disaster management efforts. In such critical situations, the UAV's ability to promptly comprehend the crisis and optimally utilize its limited power and processing resources to narrow down search areas is crucial. Therefore, developing an efficient and lightweight method for scene classification is of utmost importance. However, current approaches tend to prioritize accuracy on benchmark datasets at the expense of computational efficiency. To address this shortcoming, we introduce the Wider ATTENTION EfficientNet (WATT-EffNet), a novel method that achieves higher accuracy with a more lightweight architecture compared to the baseline EfficientNet. The WATT-EffNet leverages width-wise incremental feature modules and attention mechanisms over width-wise features to ensure the network structure remains lightweight. We evaluate our method on a UAV-based aerial disaster image classification dataset and demonstrate that it outperforms the baseline by up to 15 times in terms of classification accuracy and 38.3%38.3\% in terms of computing efficiency as measured by Floating Point Operations per second (FLOPs). Additionally, we conduct an ablation study to investigate the effect of varying the width of WATT-EffNet on accuracy and computational efficiency. Our code is available at \url{https://github.com/TanmDL/WATT-EffNet}.Comment: This paper is accepted in IEEE Trans. GRS

    The transfer and decay of maternal antibody against Shigella sonnei in a longitudinal cohort of Vietnamese infants.

    Get PDF
    BACKGROUND: Shigella sonnei is an emergent and major diarrheal pathogen for which there is currently no vaccine. We aimed to quantify duration of maternal antibody against S. sonnei and investigate transplacental IgG transfer in a birth cohort in southern Vietnam. METHODS AND RESULTS: Over 500-paired maternal/infant plasma samples were evaluated for presence of anti-S. sonnei-O IgG and IgM. Longitudinal plasma samples allowed for the estimation of the median half-life of maternal anti-S. sonnei-O IgG, which was 43 days (95% confidence interval: 41-45 days). Additionally, half of infants lacked a detectable titer by 19 weeks of age. Lower cord titers were associated with greater increases in S. sonnei IgG over the first year of life, and the incidence of S. sonnei seroconversion was estimated to be 4/100 infant years. Maternal IgG titer, the ratio of antibody transfer, the season of birth and gestational age were significantly associated with cord titer. CONCLUSIONS: Maternal anti-S. sonnei-O IgG is efficiently transferred across the placenta and anti-S. sonnei-O maternal IgG declines rapidly after birth and is undetectable after 5 months in the majority of children. Preterm neonates and children born to mothers with low IgG titers have lower cord titers and therefore may be at greater risk of seroconversion in infancy
    corecore