
Research Article
n-Gram-Based Text Compression

Vu H. Nguyen,1 Hien T. Nguyen,1 Hieu N. Duong,2 and Vaclav Snasel3

1Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2Faculty of Computer Science and Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
3Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic

Correspondence should be addressed to Hien T. Nguyen; hien@tdt.edu.vn

Received 21 May 2016; Revised 2 August 2016; Accepted 25 September 2016

Academic Editor: Geun S. Jo

Copyright © 2016 Vu H. Nguyen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio
in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into
n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that
ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly
based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-
gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12GB in total. In order to evaluate ourmethod,
we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves
compression ratio around 90% and outperforms state-of-the-art methods.

1. Introduction

According to [1], data compression is a process of converting
an input data stream into another data stream that has a
smaller size. A stream can be a file, a buffer in memory, or
individual bits sent on a communications channel. The main
objectives of data compression are to reduce the size of input
stream and increase the transfer rate as well as save storage
space. Typically, data compression techniques are classified
into two classes, that is, lossless and lossy, based on the result
of the decompression phase.

Text compression is a field of data compression, which
uses the lossless compression technique to convert an input
file to another form of data file. It cannot use the lossy
compression technique because it needs to recover the exact
original file from the compressed file. If lossy compression
technique was used, the meaning of the decompression file
will be different from the original file. Several techniques
have been proposed for text compression in recent years.
Most of them are based on the same principle of removing or
reducing redundancies from the original input text file. The
redundancy can appear at character, syllable, or word levels.
This principle proposed a mechanism for text compression

by assigning short codes to common parts, that is, characters,
syllables, words, or sentences, and long codes to rare parts.

In recent years, several techniques have been developed
for text compression. These techniques can be further clas-
sified into four major types, that is, substitution, statistical,
dictionary, and context-based method. The substitution text
compression techniques replace a certain longer repetition of
characters with a shorter one. A technique that is a repre-
sentative of these techniques is run-length encoding [2]. The
statistical techniques usually calculate the probability of char-
acters to generate the shortest average code length, such as
Shannon-Fano coding [3, 4], Huffman coding [5], and arith-
metic coding [6, 7].The next type consists of dictionary tech-
niques, which involve substitution of a substring of text by an
index or a pointer code. They relate to a position in the dic-
tionary of the substring. Representatives of these techniques
are LZW [8], LZ77 [9], and LZ78 [10].The last type is context-
based techniques, which involve the use of minimal prior
assumptions about the statistics of the text. Normally, they
use the context of the text being encoded and the history of
the text to provide more efficient compression. Representa-
tives of this type are Prediction by Partial Matching (PPM)
[11] and Burrow–Wheeler transform (BWT) [12]. Every

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 9483646, 11 pages
http://dx.doi.org/10.1155/2016/9483646

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VSB Technical University of Ostrava

https://core.ac.uk/display/84396438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Computational Intelligence and Neuroscience

method has its own advantages and disadvantages when
being applied in a specific field. None of the above methods
has been able to achieve the best results in terms of compres-
sion ratio.

Normally, users will decide to choose the appropriate
method based on their purposes. With systems that allow
the reconstruction of information from the output not to
be exactly the same as the input, we can use lossy methods,
such as systems to compress images and voicemessages.With
systems that require the original data to be recovered exactly
from the compressed data, we must use lossless methods,
such as text compression systems.

This paper presents the first attempt at text compression
using n-gram dictionaries, and the contribution has three
attributes; that is, (1) it is a method for text compression
using n-gram dictionaries, (2) it collects the text corpus of
the Vietnamese language from the Internet and builds five
n-gram dictionaries with nearly 500,000,000 n-grams, and
(3) a test set of 10 different text files with different sizes to
evaluate our new systemand compare it withmy twoprevious
methods [13, 14] and also with other methods. The rest of
this paper is organized as follows. Section 2 presents earlier
work related to this effort. Section 3 presents our proposed
method, and Section 4 presents our experiments and results.
Our conclusions are presented in Section 5.

2. Related Work

In recent years, most text compression techniques have been
based on dictionary, word, or character levels [15–18]. Refer-
ence [15] proposed a method to convert the characters in the
source file to a binary code, where the most common charac-
ters in the file have the shortest binary codes and the least
common have the longest. The binary codes are generated
based on the estimated probability of the character within
the file and are compressed using 8-bit character word length.
In [16], the authors proposed a method that combined word
with LZW. First, their method splits input text to word and
nonword and then uses them as initial alphabet of LZW. Ref-
erence [17] proposed a technique to compress short text mes-
sages based on two phases. In the first phase, it converts the
input text consisting of letters, numbers, spaces, and punctu-
ation marks commonly used in English writing to a format
which can be compressed in the second phase. In the second
phase, it proposes a transformation which reduces the size of
the message by a fixed fraction of its original size. In [18], the
authors proposed a word-based compression variant based
on the LZ77 algorithm and proposed and implemented vari-
ous ways of sliding windows and various possibilities of out-
put encoding. In a comparison with other word-based meth-
ods, their proposedmethod is the best. In these research, they
do not consider the structure of words or morphemes in the
text.

In addition, there are some approaches to text compres-
sion based on syllables, BWT.These approaches involve some
languages that have morphology in the structure of words
or morphemes (e.g., German, Arabic, Turkish, and Czech)
such as in [19–23]. Reference [19] presented a new lossless text

compression technique which utilizes syllable-based mor-
phology of multisyllabic languages. The proposed method is
designed to partition words into its syllables and then to pro-
duce their shorter bit representations for compression. The
number of bits in coding syllables depends on the number of
entries in the dictionary file. In [20], the authors proposed
a genetic algorithm in syllable-based text compression. This
algorithm was used to determine for the characteristic of syl-
lables. These characteristics are stored into dictionary, which
is part of the compression algorithm and it is not necessary to
place them into compressed data. This leads to reduction of
used space. In [21, 22], Lansky and his colleagueswere the first
to propose a method for syllable-based text compression
techniques. In their papers, they focused on specification of
syllables, methods for decomposition of words into syllables,
and using syllable-based compression in combination of the
principles of LZW and Huffman coding. In [23], the authors
first proposed a method for small text file compression based
on the Burrow–Wheeler transformation. This method com-
bines the Burrow–Wheeler transformwith the Booleanmini-
mization at the same time.

In our previous papers for Vietnamese text compression
[13, 14], we proposed a syllable-based method based on mor-
phology and syllable dictionaries in [13]. With each morpho-
syllable, it is split into a consonant and a syllable, and they are
compressed based on their corresponding dictionaries. This
method has a compression ratio that converges to around
73%, and it is suitable for small text files. The method in
[14] compressed text based on a trigram model; it splits a
text file into trigrams and compresses these trigrams using
a trigrams dictionary. This method achieves an encouraging
compression ratio around 83%.

3. Proposed Method

In this section, we present a method for Vietnamese text
compression using n-gram dictionaries. This model has two
main modules. The first module is used for text compression
and the second module performs decompression. Figure 1
describes our text compression model. In our model, we use
n-gram dictionaries for both compression and decompres-
sion. We will describe the model in detail in the following
subsections.

3.1. n-GramTheory and Dictionaries

3.1.1. n-Gram Theory. In this paper, we use n-gram theory
mentioned from [24]: an n-gram is a contiguous sequence of
𝑛 items from a given sequence of a text or speech. An item can
be a phoneme, a syllable, a letter, a word, or amorphosyllable.
In general, an item is considered as an atomic unit. An n-
gram of one item, two items, or three items is referred to as
a “unigram,” a “bigram,” or a “trigram,” respectively. Larger
sizes are sometimes referred to by the number of items n, for
example, “four-gram” and “five-gram.”

3.1.2. Dictionaries. Since we focus on Vietnamese, we build
five different Vietnamese dictionaries of unigram, bigram,
trigram, four grams, and five grams corresponding to the

Computational Intelligence and Neuroscience 3

Source text

n-grams parser

n-gram
dictionaries

Compression unit

Compressed text

n-gram based text compression

Compressed text

Code reading unit

Decompression unit

Source text

n-gram based text decompression

Figure 1: n-gram-based text compression model.

Table 1: n-gram dictionaries.

n-gram dictionary Number of n-grams Size (MB)
1 7,353 0.05
2 20,498,455 474
3 84,003,322 1,586
4 169,916,000 4,155
5 225,203,959 6,800

number of grams compressed. Table 1 shows these dictionar-
ies with their number of n-grams and size. These dictionaries
have been built based on a text corpus collected from the
Internet. The size of the text corpus is around 2.5GB. We
use SRILM (http://www.speech.sri.com/projects/srilm/) to
generate n-grams for these dictionaries. To increase the
speed of searching in these dictionaries, we arranged them
according to the alphabet. Table 1 describes the size and
number of n-grams in each dictionary.

3.2. Compression. As presented in Figure 1, the compression
module takes a source text as an input and then passes the
text through two submodules, that is, n-grams parser and
compression unit, to compress it. In following subsections,
we explain in detail.

3.2.1. n-Gram Parser. n-gram parser has been used to read
a source text file, splits it to sentences based on newline,
and reads the number of grams in the combination with the
result of the compression unit. In n-gram parser, we use five
kinds of n-gram to store for unigram, bigram, trigram, four
grams, and five grams. Based on the result of the compression
unit, the n-gram parser decides how many grams will be
read next. Algorithm 1 shows the pseudocode of this phase.
If five grams was found in the five-gram dictionary, that is,
index > 0, the force four gram compression function would
be called to encode all previous n-grams (unigram, bigram,
trigram, and four grams); then the compress function would
be called to encode this five grams. Next, the n-gram parser
reads next five grams in the input string. Otherwise, it would

input: The source text file
output: The encoded stream

(1) inputstring = read source text file
(2) count = number of grams in the inputstring
(3) while 𝑐𝑜𝑢𝑛𝑡 ≥ 5 do
(4) st5 = get first five grams of the inputstring
(5) index = find(st5, five gram dict)
(6) if 𝑖𝑛𝑑𝑒𝑥 ≥ 0 then
(7) force four gram compression(st4)
(8) outputstring += compress(index, 5)
(9) delete first five grams of the inputstring
(10) count −= 5
(11) end
(12) else
(13) st4 += get first gram of the inputstring
(14) delete first gram of the inputstring
(15) count −= 1
(16) if number of grams of st4 = 4 then
(17) four gram compression(st4)
(18) end
(19) end
(20) end
(21) if 𝑐𝑜𝑢𝑛𝑡 > 0 then
(22) four gram compression(inputstring)
(23) end

Algorithm 1: Pseudocode of the compression phase.

split one leftmost gram of five grams for four grams and read
one gram more from the input string for five grams. When
the number of grams of four-gram was 4, it calls the four
gram compression function.

Algorithm 2 shows the pseudocode of the four gram
compression function.This function is used to compress four
grams if it occurs in four-gram dictionary. Otherwise, it splits
one leftmost gram of the four-gram variable for the trigram
variable. Similar to this function, we have the trigram com-
pression, the bigram compression, and the unigram com-
pression function.

4 Computational Intelligence and Neuroscience

input: The four-gram string, in this case is st4
output: The encoded stream

(1) index = find(st4, four gram dict)
(2) if 𝑖𝑛𝑑𝑒𝑥 ≥ 0 then
(3) force trigram compression(st3)
(4) outputstring += compress(index, 4)
(5) delete content of st4
(6) end
(7) else
(8) st3 += first gram of st4
(9) delete first gram of st4
(10) if number of grams of st3 = 3 then
(11) trigram compression(st3)
(12) end
(13) end

Algorithm 2: Pseudocode of the four gram compression.

input: The four-gram string, in this case is st4
output: The encoded stream

(1) while number of grams of st4 > 0 do
(2) st3 += first gram of st4
(3) delete first gram of st4
(4) if number of grams of st3 = 3 then
(5) trigram compression(st3)
(6) end
(7) end
(8) force trigram compression(st3)

Algorithm 3: Pseudocode of the force four gram compression.

The force four gram compression is called to encode all
four-gram, trigram, bigram, and unigram when five-gram
variable is found in the five-gram dictionary. Similar to this
function, we have the force trigram compression, the force
bigram compression, and the force unigram compression
function (Algorithm 3).

3.2.2. CompressionUnit. Thecompression unit uses the result
from the n-gram parser to decide how many grams will be
compressed and what kind of n-gram dictionaries should be
used. Based on the number of n-grams in each dictionary, we
will construct the number of bytes to encode each n-gram
corresponding to the dictionary. Table 2 describes the num-
ber of bytes used to encode each n-gram of each dictionary.

To classify the dictionary that was used to encode each n-
gram and the other cases, we use three most significant bits
(MSB) of the first byte of each encoded byte. Table 3 describes
the value of these bits corresponding to each dictionary.

The index of each n-gram corresponding to each dictio-
nary is encoded in the bits after the first three bits of the first
byte. As seen in Table 3, there are two special cases for the
n-gram dictionary: a newline and a unigram that does not
appear in the unigram dictionary corresponding to a value of

Table 2: Number of encoded bytes for each n-gram of each dic-
tionary.

n-gram dictionary Number of n-grams Number of bytes
1 7,353 2
2 20,498,455 4
3 84,003,322 4
4 169,916,000 4
5 225,203,959 4

Table 3: Value of three MSB and number of bytes.

n-gram
dictionary Value of three MSB Number of bytes is read

more
1 0 0 1 1

2 0 1 0 3

3 0 1 1 3

4 1 0 0 3

5 1 0 1 3

Newline 1 1 0 0

Others 1 1 1
Value of five bits after

three first bits of current
byte

“newline” and “others.” In these cases, the compression unit
will encode as follows:

(i) When the result received from the n-gram parser is
the newline, the compression unit will encode the
value “110” for the first three bits of MSB, and the next
five bits of this byte will have the value “00000.”

(ii) When the result is the others, the three MSB of the
first byte are “111” and the next five bits of this byte
present the number of bytes which were used to
encode this gram.

3.3. Decompression. As seen in Figure 1, the decompression
module takes a compressed text as an input and then passes
the text through two submodules, that is, code reading unit
and decompression unit, to decompress it. We explain in
detail in following subsections.

3.3.1. Code Reading Unit. First, this unit reads the com-
pressed text from the compression phase.This result becomes
the input sequence of the code reading unit.The code reading
unit splits this input sequence byte to byte. Then, it reads the
first byte of the input sequence and splits and analyzes the first
three bits of this byte to classify the dictionary to which this
n-gram belongs. Based on this result, this unit will read more
bytes from the input sequence. Table 2 shows the number
of bytes that the code reading unit reads after the first byte
according to the classification of the dictionary. After reading
these bytes, it transfers them to the decompression unit and
repeats its work until the input sequence is null.

Computational Intelligence and Neuroscience 5

input: The encoded stream
output: The decoded stream

(1) inputstring← encodedstream
(2) while length of inputstring > 0 do
(3) firstbyte = read first byte from the inputstring
(4) delete first byte of the the inputstring
(5) dict = get value of three bits of firstbyte
(6) if dict ≤ 5 then
(7) number = getnumberbytereadmore(dict)
(8) bytereadmore = read number byte more from the inputstring
(9) delete number byte of the inputstring
(10) indexstring = get last five bits of the firstbyte + the bytereadmore
(11) indexvalue = get value of the the indexstring
(12) output += decompress(indexvalue, dict)
(13) end
(14) else if dict = 6 then
(15) output += newline
(16) end
(17) else
(18) number = value of five last bits of the firstbyte
(19) bytereadmore = read number byte more from the inputstring
(20) output += decode for the bytereadmore
(21) end
(22) end

Algorithm 4: Pseudocode of the decompression phase.

3.3.2. Decompression Unit. This unit receives the results from
the code reading unit. It decodes these results according to
the classification of the dictionary as follows.

(i) Decode n-grams occurring in dictionaries

(1) Identifying the dictionary: based on the classifi-
cation dictionary from the code reading unit

(2) Identifying the index of an n-gram in the dictio-
nary: based on the value calculated from bytes
that were read by the code reading unit

(3) Decode n-gram: when the classification of the
dictionary has a value from one to five, the
decompression unit decodes the n-gram in the
dictionary based on the index of the n-gram

(ii) Decode n-grams that do not occur in dictionaries

(1) Decode newline: when the classification of dic-
tionary is a “newline,” it means that the value of
the first three bits is 110.The decompression unit
decodes a newline for this n-gram

(2) Decode others: when the classification of the
dictionary is “others,” based on the value of the
remaining bits of the first byte, the decompres-
sion unit will decode all bytes after the first byte

After finishing the decoding for one n-gram or other
cases, the decompression unit reads the next result from the
code reading unit and repeats the decompression tasks to
decode other n-grams or other cases until it reads the last
byte. Algorithm 4 shows the pseudocode of the decompres-
sion phase.

3.4. Compression Ratio. Compression ratio is used to mea-
sure the efficiency of the compression method. The stronger

the compression ratio is, the better the quality of this method
is. The compression ratio can be calculated by

CR = (1 − compressed file size
original file size

) × 100, (1)

where original file size is size of the original file and
compressed file size is size of the compressed file.

3.5. The Complexity of Our Method. Let 𝑛 be the number
of n-grams in the source text and a, b, c, d, and 𝑒 be the
number of five grams, four grams, trigrams, bigrams, and
unigrams, respectively, in dictionaries. Let 𝑘 be log

2
(𝑎) +

log
2
(𝑏)+ log

2
(𝑐)+ log

2
(𝑑)+ log

2
(𝑒). According to pseudocode

from Algorithm 1, in the worst case, all five grams, four
grams, trigrams, and bigrams do not occur in five grams, four
grams, trigram, and bigram dictionary, respectively. Hence,
the complexity of our method is 𝑂(𝑘 ∗ 𝑛).
3.6. Example

3.6.1. Compression Phase. Let us encode the following seq-
uence using the n-gram approach.

Nén dữ liệu nhằm giảm kı́ch thước dữ liệu để tăng tốc độ
truyền cũng như tiết kiệm không gian lưu trữ

Assume that we have five dictionaries for unigram, big-
ram, trigram, four grams, and five grams, as seen in Table 4.

The n-gramparser first encounters the first five-gramNén
dữ liệu nhằm giảm and copies it to the five-gram variable.
This pattern is not in the five-gram dictionary, so it splits
the first gram of this pattern for the four-gram variable and
concatenates the next gram of the input sequence to the
five-gram variable. The content of the five-gram and four-
gram variables becomes dữ liệu nhằm giảm kı́ch and Nén,

6 Computational Intelligence and Neuroscience

Table 4: Five dictionaries.

(a) Unigram dictionary

Index Entry
1 nhằm
2 lưu
3 trữ

(b) Bigram dictionary

Index Entry
1 cũng như

(c) Trigram dictionary

Index Entry
1 Nén dữ liệu

(d) Four-gram dictionary

Index Entry
1 tiết kiệm không gian

(e) Five-gram dictionary

Index Entry
1 giảm kı́ch thước dữ liệu
2 để tăng tốc độ truyền

respectively.Then, it checks the number of grams in the four-
gram variable, which is one at this time. In this case, the value
is less than four; it bypasses the four gram compression and
turns back to the five-gram variable. Because this pattern is
not in the five-gram dictionary, similar to the first case, it
splits the first gramof this five-gram to the four-gram variable
and concatenates the next gram of the input sequence to the
five-gram variable. The content of the five-gram and four-
gram variables shall become liệu nhằm giảm kı́ch thước and
Nén dữ, respectively. Then, it checks the number of grams in
the four-gram variable, which is two now. This value is less
than four, similar to the first case; it turns back to five-gram
variable. It repeats these operations until the content of the
five-gram variable is nhằm giảm kı́ch thước dữ and the four-
gram variable is Nén dữ liệu. This five-gram pattern is not in
five-gram dictionary, so it splits the first gram of this pattern
for the four-gram variable and concatenates the next gram of
the input sequence to the five-gram variable. The content of
the five-gram and four-gramvariables shall become giảm kı́ch
thước dữ liệu and Nén dữ liệu nhằm, respectively. It checks
the number of grams in the four-gram variable, which is
four now. It calls the four gram compression as presented in
Algorithm 2. The four gram compression searches the four-
gram pattern in the four-gram dictionary, which is not found
in the four-gram dictionary. It splits the first gram of this
pattern into the trigram variable. The content of the four-
gram and the trigram variable becomes dữ liệu nhằm and
Nén, respectively. Then, it checks the number of grams in the
trigram variable, which is one at this time. So, it bypasses the
trigram compression, exits the four gram compression, and
turns back to five-gram variable in Algorithm 1. The first five

steps as seen in Table 5 show the content of the five-gram,
four-gram, and trigram variables throughout these steps.

At Step 6, first, the n-gram parser checks the value of the
five-gram variable in the five-gram dictionary. This pattern is
in the dictionary; therefore, it calls the compression unit to
encode all bigram, trigram, and four grams. Then, it encodes
the five-gram. When the compression unit is finished, the
n-gram parser reads the next five grams from the input
sequence. In Table 5, Steps 6.1 to 6.4 show all substeps of
Step 6 and in Table 6, Steps 6.2 to 6.4 show the encoder
output sequence.

As seen in Table 5, at Step 6.1, the n-gram parser splits the
first gram of the four-gram variable for the trigram variable,
and the content of the four-gram and trigram variable shall
become liệu nhằm and Nén dữ, respectively. Then, it checks
the number of grams in the trigram variable, which is two at
this time. So, it bypasses the trigram compression andmoves
to Step 6.2. At Step 6.2, it continues splitting the first gram of
the four-gram variable for the trigram variable. The content
of the four-gram and trigram variables shall become nhằm
and Nén dữ liệu, respectively. Next, it checks the number of
grams in the trigram variable, which is three at this time.
It then searches for this trigram in the trigram dictionary.
Because this trigram is in the trigram dictionary, it calls the
compression unit to encode bigram in the bigram variable. In
this case, the bigram variable is null. It calls the compression
unit to encode the trigram in the trigram variable and moves
to the next substep. The encoded sequence of this trigram
is shown in Table 6 at Step 6.2. The first three bits of this
encoded sequence which have value 011 refer to trigram
dictionary as seen in Table 3 and all remaining bits refer to
the index of this trigram in the trigram dictionary.

At Step 6.3, the bigram and trigram variables are null; it
counts the number of grams in the four-gram variable, which
is 1 in this case; then it copies this gram to the unigram and
searches for this unigram in the unigram dictionary. This
unigram is in dictionary so it calls the compression unit to
encode this unigram. The encoder output sequence of this
unigram is shown in Table 6 at Step 6.3. At Step 6.4, it calls
the compression unit to encode the five-gram in the five-gram
variable, and the encoder output sequence of this five-gram is
shown in Table 6 at Step 6.4. Then it reads the next five-gram
in the input sequence to the five-gram variable. At this time,
the content of the five-gram variable is để tăng tốc độ truyền.

The n-gram parser and the compression unit will process
similar to previous cases for all remaining grams of the input
sequence.The results of these steps are shown in Table 5 from
Step 7 to Step 13.4. The encoder output sequences are shown
in Table 6 from Step 7 to Step 13.4. The final encoder output
sequence is the result of concatenation of all encoder output
sequences from Step 6.1 to 13.4 in Table 6. The final encoder
output sequence is

01100000000000000000000000000001|00100000
00000001|10100000000000000000000000000001
|10100000000000000000000000000010|01000000
000000000000000000000001|1000000000000000
0000000000000001|0010000000000010|00100000
00000011.

Computational Intelligence and Neuroscience 7

Table 5: All steps and values of n-grams.

Step Five-gram variable Four-gram variable Trigram variable Bigram variable
1 Nén dữ liệu nhằm giảm
2 dữ liệu nhằm giảm kı́ch Nén
3 liệu nhằm giảm kı́ch thước Nén dữ
4 nhằm giảm kı́ch thước dữ Nén dữ liệu
5 giảm kı́ch thước dữ liệu dữ liệu nhằm Nén
6.1 giảm kı́ch thước dữ liệu liệu nhằm Nén dữ
6.2 giảm kı́ch thước dữ liệu nhằm
6.3 giảm kı́ch thước dữ liệu
6.4 để tăng tốc độ truyền
7 cũng như tiết kiệm không
8 như tiết kiệm không gian cũng
9 tiết kiệm không gian lưu cũng như
10 kiệm không gian lưu trữ cũng như tiết
11 không gian lưu trữ như tiết kiệm cũng
12 gian lưu trữ tiết kiệm không cũng như
13.1 lưu trữ tiết kiệm không gian
13.2 lưu trữ
13.3 trữ
13.4

Table 6: Encoder output sequences.

Step Encoding of dictionary Encoded sequence
6.2 011 00000000000000000000000000001
6.3 001 0000000000001
6.4 101 00000000000000000000000000001
7 101 00000000000000000000000000010
13.1 010 00000000000000000000000000001
13.2 100 00000000000000000000000000001
13.3 001 0000000000010
13.4 001 0000000000011

3.6.2. Decompression Phase. In this section, the encoder
output sequence from the previous example is taken and is
decoded using the decompression unit. The encoder output
sequence in the previous example was

01100000000000000000000000000001|00100000
00000001|10100000000000000000000000000001
|10100000000000000000000000000010|01000000
000000000000000000000001|1000000000000000
0000000000000001|0010000000000010|00100000
00000011.

The decompression unit uses the same dictionaries as the
compression unit as seen in Table 4. It reads the first byte of
the input sequence; the content of this first byte is 01100000.
The first three bits are split, and the value of these three
bits is 011. It finds the corresponding n-gram dictionary of
these three bits and the number of bytes that is read more as
presented in Table 3. In this case, the n-gram dictionary is the
trigram dictionary and the number of bytes that is read more
is 3. The decoder reads the next three bytes from the input
sequence. The index of the entry was calculated based on the
value of all remaining bits after the first three bits and the
three bytes that is read more. The entry is determined based
on this index. The decoder repeats these steps until it reads

the last byte of the input sequence. Table 7 shows all steps and
results of the decompression phase.

The final decoder output sequence is the result of concate-
nation of all decoder output sequences from Step 1 to Step 8
as presented in Table 7. With each decoder output sequence
from Step 1 to Step 7, we add one space character before the
concatenation. The final encoder output sequence is Nén dữ
liệu nhằm giảm kı́ch thước dữ liệu để tăng tốc độ truyền cũng
như tiết kiệm không gian lưu trữ.

4. Experiments

We conducted an experiment to evaluate ourmethod, using a
dataset that is randomized collection from some Vietnamese
news agencies. The dataset includes 10 files completely differ-
ent in size and content.

In order to evaluate the effects of a combination of various
n-gram dictionaries, we conducted three experiments with
three kinds of systems. In the first case, we build a systemwith
unigram, bigram, and trigram dictionaries. Next, we extend
the first one with four-gram dictionary. Lastly, we extend the
second one with five-gram dictionary.The results of the three
experiments are shown in Table 8. As presented in Table 8,
we find out that the compression ratio from the third case is

8 Computational Intelligence and Neuroscience

Table 7: All steps and the results of the decompression phase.

Step First byte Dict. nbm bits to calculate index Index value Decoder output sequence
1 01100000 011 3 00000000000000000000000000001 1 Nén dữ liệu
2 00100000 001 1 0000000000001 1 nhằm
3 10100000 101 3 00000000000000000000000000001 1 giảm kı́ch thước dữ liệu
4 10100000 101 3 00000000000000000000000000010 2 để tăng tốc độ truyền
5 01000000 010 3 00000000000000000000000000001 1 cũng như
6 10000000 100 3 00000000000000000000000000001 1 tiết kiệm không gian
7 00100000 001 1 0000000000010 2 lưu
8 00100000 001 1 0000000000011 3 trữ

Table 8: Compression ratio of three experience cases.

Number OFS CFS-C1 CR-C1 CFS-C2 CR-C2 CFS-C3 CR-C3
1 1,166 210 81.99% 166 85.76% 136 88.34%
2 2,240 362 83.84% 274 87.77% 222 90.09%
3 6,628 1,245 81.22% 999 84.93% 887 86.62%
4 12,224 1,954 84.02% 1,503 87.70% 1,179 90.36%
5 22,692 3,565 84.29% 2,652 88.31% 2,180 90.39%
6 49,428 7,638 84.55% 5,712 88.44% 4,538 90.82%
7 96,994 15,636 83.88% 12,359 87.26% 10,416 89.26%
8 156,516 24,974 84.04% 19,188 87.74% 15,889 89.85%
9 269,000 43,887 83.69% 34,182 87.29% 28,937 89.24%
10 489,530 80,685 83.52% 63,472 87.03% 54,117 88.95%

76.00
78.00
80.00
82.00
84.00
86.00
88.00
90.00
92.00

C
om

pr
es

sio
n

ra
tio

 (%
)

Original file size (byte)

Compression ratio of three cases

CR-C1
CR-C2
CR-C3

1
,1
6
6

2
,2
4
0

6
,6
2
8

1
2

,2
2
4

2
2

,6
9
2

4
9

,4
2
8

9
6

,9
9
4

1
5
6

,5
1
6

2
6
9

,0
0
0

4
8
9

,5
3
0

Figure 2: Comparison between the three cases.

the best, follow-up is the second case, and the last one comes
from the first case. The compression ratio in this section was
used according to (1). In Tables 8, 9, and 10 and Figures 2,
3, 4, 5, and 6, we have some abbreviations and meanings as
follows: OFS: original file size in byte; CFS: compressed file
size in byte; CR: compression ratio; C1, C2, andC3: three cases
above, respectively; O: our method; RAR: WinRAR; ZIP:
WinZIP.

As seen in Figure 2, the compression ratio when we com-
bine all five dictionaries is the highest.

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

C
om

pr
es

sio
n

ra
tio

 (%
)

Original file size (byte)

Compression ratio of three methods

1
,1
6
6

2
,2
4
0

6
,6
2
8

1
2

,2
2
4

2
2

,6
9
2

4
9

,4
2
8

9
6

,9
9
4

1
5
6

,5
1
6

2
6
9

,0
0
0

4
8
9

,5
3
0

CR-[13]
CR-[14]
CR-O

Figure 3: Compression ratio of our method [13, 14].

In order to evaluate our method with the methods
presented in [13, 14], we compress the input files using these
methods. In Table 9, we show the results of the current
method in 10 cases in comparison with the methods in [13,
14]. As shown in Table 9 and Figure 3, the compression ratio
of ourmethod is better than themethods presented in [13, 14]
for any size of text in our test cases.

Table 10 and Figure 4 show the results of our method in
comparison with those of other methods, such as WinZIP
version 19.5 (http://www.winzip.com/win/en/index.htm), the

Computational Intelligence and Neuroscience 9

Table 9: CR of the current method with the methods presented in [13, 14].

Number OFS CFS-[13] CR-[13] CFS-[14] CR-[14] CFS-O CR-O
1 1,166 345 70.41% 185 84.13% 136 88.34%
2 2,240 599 73.26% 359 83.97% 222 90.09%
3 6,628 1,803 72.80% 1,710 74.20% 887 86.62%
4 12,224 3,495 71.41% 2,057 83.17% 1,179 90.36%
5 22,692 6,418 71.72% 3,702 83.69% 2,180 90.39%
6 49,428 13,881 71.92% 7,870 84.08% 4,538 90.82%
7 96,994 26,772 72.40% 17,723 81.73% 10,416 89.26%
8 156,516 43,701 72.08% 27,434 82.47% 15,889 89.85%
9 269,000 74,504 72.30% 49,902 81.45% 28,937 89.24%
10 489,530 139,985 71.40% 92,739 81.06% 54,117 88.95%

Table 10: Compression ratio of our method, WinRAR, and WinZIP.

Number OFS CFS-O CR-O CFS-RAR CR-RAR CFS-ZIP CR-ZIP
1 1,166 136 88.34% 617 47.08% 676 42.02%
2 2,240 222 90.09% 887 60.40% 946 57.77%
3 6,628 887 86.62% 2,052 69.04% 2,111 68.15%
4 12,224 1,179 90.36% 3,378 72.37% 3,442 71.84%
5 22,692 2,180 90.39% 6,162 72.85% 6,150 72.90%
6 49,428 4,538 90.82% 12,504 74.70% 12,286 75.14%
7 96,994 10,416 89.26% 21,389 77.95% 21,321 78.02%
8 156,516 15,889 89.85% 34,162 78.17% 34,362 78.05%
9 269,000 28,937 89.24% 56,152 79.13% 57,671 78.56%
10 489,530 54,117 88.95% 101,269 79.31% 108,175 77.90%

CR of our method
CR of WinRAR
CR of WinZIP

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

C
om

pr
es

sio
n

ra
tio

 (%
)

Original file size (byte)

Compression ratio of three methods

1
,1
6
6

2
,2
4
0

6
,6
2
8

1
2

,2
2
4

2
2

,6
9
2

4
9

,4
2
8

9
6

,9
9
4

1
5
6

,5
1
6

2
6
9

,0
0
0

4
8
9

,5
3
0

Figure 4: Compression ratio of ourmethod,WinRAR, andWinZIP.

software combining LZ77 [8] andHuffman coding, andWin-
RAR version 5.21 (http://www.rarlab.com/download.htm),
the software combining LZSS [25] and Prediction by Par-
tial Matching [11]. The experimental results show that our
method achieves the highest compression ratio on the same
testing set.

41 42 39 43 43 45 50 55 59 691,000
2,000
3,000
4,000
5,000
6,000
7,000

C
om

pr
es

sio
n

tim
e (

m
s)

Original file size (byte)

1
,1
6
6

2
,2
4
0

6
,6
2
8

1
2

,2
2
4

2
2

,6
9
2

4
9

,4
2
8

9
6

,9
9
4

1
5
6

,5
1
6

2
6
9

,0
0
0

4
8
9

,5
3
0

—

CT-[13]
CT-[14]

CT-O
CT-WinRar

Figure 5: Compression time of four methods.

Tables 11 and 12 and Figures 5 and 6 show the compression
and decompression time of our method in comparison with
the methods in [13, 14] and WinRAR, respectively. In these
tables and figures, we have some abbreviations and meanings
as follows: CT: compression time; DT: decompression time;
RAR: WinRAR; O: our method; ms: millisecond.

As presented in Table 12 and Figure 5, the compression
time of our method is higher than those of other methods.

10 Computational Intelligence and Neuroscience

Table 11: Compression time of four methods.

Number File size CT-[13]-ms CT-[14]-ms CT-O-ms CT-RAR-ms
1 1,166 4 1 11 41
2 2,240 8 2 19 42
3 6,628 12 4 143 39
4 12,224 43 5 111 43
5 22,692 79 10 187 43
6 49,428 181 21 383 45
7 96,994 381 47 1,246 50
8 156,516 692 60 1,623 55
9 269,000 1,356 105 3,374 59
10 489,530 3,388 185 6,463 69

Table 12: Decompression time of four methods.

Number File size CT-[13]-ms CT-[14]-ms CT-O-ms CT-RAR-ms
1 1,166 1 1 9 30
2 2,240 2 2 17 32
3 6,628 4 3 56 34
4 12,224 8 8 83 37
5 22,692 18 13 149 39
6 49,428 70 18 329 42
7 96,994 290 70 770 46
8 156,516 961 250 1,398 54
9 269,000 3,111 873 2,958 67
10 489,530 11,427 5,070 6,773 98

30 32 34 37 39 42 46 54 67 98
2,000
4,000
6,000
8,000

10,000
12,000

Decompression file size (byte)

D
ec

om
pr

es
sio

n
tim

e (
m

s)

1
,1
6
6

2
,2
4
0

6
,6
2
8

1
2

,2
2
4

2
2

,6
9
2

4
9

,4
2
8

9
6

,9
9
4

1
5
6

,5
1
6

2
6
9

,0
0
0

4
8
9

,5
3
0

—

DCT-[13]
DCT-[14]

DCT-O
DCT-WinRar

Figure 6: Decompression time of four methods.

As presented in Table 12 and Figure 6, the decompression
time of our method is higher than [14] but it is slower than
[13] and WinRAR.

5. Conclusions

In this paper, we present a novel method using n-gram
dictionaries for text compression. We build five different n-
gram dictionaries range from unigram to five grams from

a 2.5GB text corpus and obtain approximately 12GB n-
grams. We conduct experiments on a dataset of 10 files with
different sizes and content in three different scenarios. The
first scenario uses unigram, bigram, and trigram dictionaries.
The second scenario extends the first one with four-gram
dictionary and the final scenario extends the second one with
five-gram dictionary. The experimental results show that our
method achieves the performance comparable with those of
state-of-the-art methods including WinZIP and WinRAR in
terms of compression ratio, while it is slower than these two
of WinZIP and WinRAR. Speeding-up looking-up process
of dictionaries may lead to foster the running time of ours
method. We put this perspective as a direction of research in
future.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] D. Salomon and G. Motta, Data Compression—The Complete
Reference, Springer, New York, NY, USA, 5th edition, 2010.

[2] A.H. Robinson andC. Cherry, “Results of a prototype television
bandwidth compression scheme,” Proceedings of the IEEE, vol.
55, no. 3, pp. 356–364, 1967.

Computational Intelligence and Neuroscience 11

[3] R. M. Fano, “The transmission of information,” Tech. Rep.,
Massachusetts Institute of Technology, Research Laboratory of
Electronics, Cambridge, Mass, USA, 1949.

[4] C. E. Shannon, “Amathematical theory of communication,”The
Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[5] D. A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp.
1098–1101, 1952.

[6] P. G. Howard and J. S. Vitter, “Arithmetic coding for data com-
pression,” Proceedings of the IEEE, vol. 82, no. 6, pp. 857–865,
1994.

[7] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding
for data compression,” Communications of the ACM, vol. 30, no.
6, pp. 520–540, 1987.

[8] T. A. Welch, “Technique for high-performance data compres-
sion,” IEEE Computer, vol. 17, no. 6, pp. 8–19, 1984.

[9] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on InformationTheory, vol. 23,
no. 3, pp. 337–343, 1977.

[10] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Transactions on InformationTheory,
vol. 24, no. 5, pp. 530–536, 1978.

[11] J. Cleary and I. Witten, “Data compression using adaptive
coding and partial string matching,” IEEE Transactions on
Communications, vol. 32, no. 4, pp. 396–402, 1984.

[12] M. Burrows and D. Wheeler, “A block-sorting lossless data
compression algorithm,” Digital SRC Research Report, 1994.

[13] V. H. Nguyen, H. T. Nguyen, H. N. Duong, and V. Snasel, “A
syllable-basedmethod for vietnamese text compression,” inPro-
ceedings of the ACM 10th International Conference onUbiquitous
Information Management and Communication (IMCOM ’16), p.
17, Danang, Viet Nam, January 2016.

[14] V. H. Nguyen, H. T. Nguyen, H. N. Duong, and V. Snasel,
“Trigram-based vietnamese text compression,” in Recent Devel-
opments in Intelligent Information and Database Systems, vol.
642 of Studies in Computational Intelligence, pp. 297–307,
Springer, 2016.

[15] H. Al-Bahadili and S. M. Hussain, “An adaptive character
wordlength algorithm for data compression,” Computers and
Mathematics with Applications, vol. 55, no. 6, pp. 1250–1256,
2008.

[16] J. Dvorskþ, J. Pokornþ, and J. Snásel, “Word-based compression
methods and indexing for text retrieval systems,” in Proceedings
of the 3rd East European Conference on Advances in Databases
and Information Systems (ADBIS ’99), pp. 75–84, Maribor,
Slovenia, 1999.

[17] K. Kalajdzic, S. H. Ali, and A. Patel, “Rapid lossless compression
of short textmessages,”Computer Standards& Interfaces, vol. 37,
pp. 53–59, 2015.

[18] J. Platos and J. Dvorskþ, “Word-based text compression,” CoRR
abs/0804.3680, 2008.

[19] I. Akman, H. Bayindir, S. Ozleme, Z. Akin, and S. Misra,
“A lossless text compression technique using syllable based
morphology,” The International Arab Journal of Information
Technology, vol. 8, no. 1, pp. 66–74, 2011.

[20] T. Kuthan and J. Lansky, “Genetic algorithms in syllable-based
text compression,” in Proceedings of the Dateso Annual Interna-
tional Workshop on Databases, Texts, Specifications and Objects,
Desna, Czech Republic, April 2007.

[21] J. Lansky and M. Zemlicka, “Text compression: syllables,” in
Proceedings of the Dateso Annual International Workshop on

Databases, Texts, Specifications and Objects, pp. 32–45, Desna,
Czech Republic, April 2005.

[22] J. Lansky and M. Zemlicka, “Compression of small text files
using syllables,” in Proceedings of the Data Compression Confer-
ence, Snowbird, Utah, USA, March 2006.

[23] J. Platoš, V. Snášel, and E. El-Qawasmeh, “Compression of small
text files,” Advanced Engineering Informatics, vol. 22, no. 3, pp.
410–417, 2008.

[24] P. Koehn, StatisticalMachine Translation, CambridgeUniversity
Press, Cambridge, UK, 2009.

[25] J. A. Storer and T. G. Szymanski, “Data compression via textual
substitution,” Journal of the ACM, vol. 29, no. 4, pp. 928–951,
1982.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

