412 research outputs found

    On the expected number of equilibria in a multi-player multi-strategy evolutionary game

    Full text link
    In this paper, we analyze the mean number E(n,d)E(n,d) of internal equilibria in a general dd-player nn-strategy evolutionary game where the agents' payoffs are normally distributed. First, we give a computationally implementable formula for the general case. Next we characterize the asymptotic behavior of E(2,d)E(2,d), estimating its lower and upper bounds as dd increases. Two important consequences are obtained from this analysis. On the one hand, we show that in both cases the probability of seeing the maximal possible number of equilibria tends to zero when dd or nn respectively goes to infinity. On the other hand, we demonstrate that the expected number of stable equilibria is bounded within a certain interval. Finally, for larger nn and dd, numerical results are provided and discussed.Comment: 26 pages, 1 figure, 1 table. revised versio

    Quantum-based Distributed Algorithms for Edge Node Placement and Workload Allocation

    Full text link
    Edge computing is a promising technology that offers a superior user experience and enables various innovative Internet of Things applications. In this paper, we present a mixed-integer linear programming (MILP) model for optimal edge server placement and workload allocation, which is known to be NP-hard. To this end, we explore the possibility of addressing this computationally challenging problem using quantum computing. However, existing quantum solvers are limited to solving unconstrained binary programming problems. To overcome this obstacle, we propose a hybrid quantum-classical solution that decomposes the original problem into a quadratic unconstrained binary optimization (QUBO) problem and a linear program (LP) subproblem. The QUBO problem can be solved by a quantum solver, while the LP subproblem can be solved using traditional LP solvers. Our numerical experiments demonstrate the practicality of leveraging quantum supremacy to solve complex optimization problems in edge computing

    Weighted bounds for multilinear operators with non-smooth kernels

    Full text link
    Let TT be a multilinear integral operator which is bounded on certain products of Lebesgue spaces on Rn\mathbb R^n. We assume that its associated kernel satisfies some mild regularity condition which is weaker than the usual H\"older continuity of those in the class of multilinear Calder\'on-Zygmund singular integral operators. In this paper, given a suitable multiple weight w⃗\vec{w}, we obtain the bound for the weighted norm of multilinear operators TT in terms of w⃗\vec{w}. As applications, we exploit this result to obtain the weighted bounds for certain singular integral operators such as linear and multilinear Fourier multipliers and the Riesz transforms associated to Schr\"odinger operators on Rn\mathbb{R}^n. Our results are new even in the linear case

    Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games

    Get PDF
    In this paper, we study the distribution and behaviour of internal equilibria in a d-player n-strategy random evolutionary game where the game payoff matrix is generated from normal distributions. The study of this paper reveals and exploits interesting connections between evolutionary game theory and random polynomial theory. The main contributions of the paper are some qualitative and quantitative results on the expected density, fn,dfn,d, and the expected number, E(n, d), of (stable) internal equilibria. Firstly, we show that in multi-player two-strategy games, they behave asymptotically as √d−1 as d is sufficiently large. Secondly, we prove that they are monotone functions of d. We also make a conjecture for games with more than two strategies. Thirdly, we provide numerical simulations for our analytical results and to support the conjecture. As consequences of our analysis, some qualitative and quantitative results on the distribution of zeros of a random Bernstein polynomial are also obtained

    A closed-form solution for free vibration of multiple cracked Timoshenko beam and application

    Get PDF
    A closed-form solution for free vibration is constructed and used for obtaining explicit frequency equation and mode shapes of  Timoshenko beams with arbitrary number of cracks. The cracks are represented by the rotational springs of stiffness calculated from the crack depth.  Using the obtained frequency equation, the sensitivity of natural frequencies to crack of the beams is examined in comparison with the  Euler-Bernoulli beams. Numerical results demonstrate that the Timoshenko beam theory is efficiently applicable not only for short or fat beams but also for the long or slender ones. Nevertheless, both the theories are equivalent in sensitivity analysis of fundamental frequency to cracks and they get to be different for higher frequencies
    • …
    corecore