25 research outputs found

    Differentiable Physics-based Greenhouse Simulation

    Full text link
    We present a differentiable greenhouse simulation model based on physical processes whose parameters can be obtained by training from real data. The physics-based simulation model is fully interpretable and is able to do state prediction for both climate and crop dynamics in the greenhouse over very a long time horizon. The model works by constructing a system of linear differential equations and solving them to obtain the next state. We propose a procedure to solve the differential equations, handle the problem of missing unobservable states in the data, and train the model efficiently. Our experiment shows the procedure is effective. The model improves significantly after training and can simulate a greenhouse that grows cucumbers accurately.Comment: Accepted at the Machine Learning and the Physical Sciences workshop, NeurIPS 2022. 7 pages, 2 figure

    Water-soluble organic aerosol in the Los Angeles Basin and outflow regions: Airborne and ground measurements during the 2010 CalNex field campaign

    Get PDF
    A particle-into-liquid sampler coupled to a total organic carbon analyzer (PILS-TOC) quantified particulate water-soluble organic carbon (WSOC) mass concentrations during the May 2010 deployment of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter in the CalNex field study. WSOC data collected during 16 flights provide the first spatiotemporal maps of WSOC in the San Joaquin Valley, Los Angeles Basin, and outflow regions of the Basin. WSOC was consistently higher in concentration within the Los Angeles Basin, where sea breeze transport and Basin topography strongly influence the spatial distribution of WSOC. The highest WSOC levels were associated with fire plumes, highlighting the importance of both primary and secondary sources for WSOC in the region. Residual pollution layers enriched with WSOC are observed aloft up to an altitude of 3.2 km and the highest WSOC levels for each flight were typically observed above 500 m. Simultaneous ground WSOC measurements during aircraft overpasses in Pasadena and Riverside typically exhibit lower levels, especially when relative humidity (RH) was higher aloft suggestive of the influence of aerosol-phase water. This points to the underestimation of the radiative effects of WSOC when using only surface measurements. Reduced aerosol-phase water in the eastern desert outflow region likely promotes the re-partitioning of WSOC to the gas phase and suppression of processes to produce these species (partitioning, multiphase chemistry, photolytic production); as a result, WSOC is reduced relative to sulfate (but not as much as nitrate) as aerosol is advected from the Basin to the outflows

    Polyphasic evaluation and cytotoxic investigation of isolated cyanobacteria with an emphasis on potent activities of a Scytonema strain

    Get PDF
    DATA AVAILABILITY STATEMENT : The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.Cyanobacteria are phototrophic organisms widely found in most types of natural habitats in the tropical regions of the world. In this study, we isolated and identified cyanobacterial strains from paddy soil in Hanoi (Vietnam) and investigated their cytotoxic activities. Five isolated cyanobacterial strains showed distinctive profiles of gene sequences (rRNA 16S and rbcL), phylogenetic placements, and morphological characteristics. Based on the polyphasic evaluation, they were classified as Scytonema bilaspurense NK13, Hapalosiphon welwitschii MD2411, Aulosira sp. XN1103, Desikacharya sp. NS2000, and Desmonostoc sp. NK1813. The cytotoxic screening revealed that the extract of strain Scytonema bilaspurense NK13 exhibited potent cytotoxic activities against four human cell lines of HeLa cells, OVCAR-8 cells, HaCaT cells, and HEK-293T cells, with IC50 values of 3.8, 34.2, 21.6, and 0.6ÎŒg/mL, respectively. This is the first time a well-classified Scytonema strain from tropical habitat in Southeast Asia has been recognized as a potential producer of cytotoxic compounds.The Vietnam National University, Hanoi (VNU).http://www.frontiersin.org/Microbiologyam2023BiochemistryGeneticsMicrobiology and Plant Patholog

    Composition and hygroscopicity of the Los Angeles Aerosol: CalNex

    Get PDF
    Aircraft-based measurements of aerosol composition, either bulk or single-particle, and both subsaturated and supersaturated hygroscopicity were made in the Los Angeles Basin and its outflows during May 2010 during the CalNex field study. Aerosol composition evolves from source-rich areas in the western Basin to downwind sites in the eastern Basin, evidenced by transition from an external to internal mixture, as well as enhancements in organic O : C ratio, the amount of organics and nitrate internally mixed on almost all particle types, and coating thickness on refractory black carbon (rBC). Transport into hot, dilute outflow regions leads to significant volatilization of semivolatile material, resulting in a unimodal aerosol comprising primarily oxygenated, low-volatility, water-soluble organics and sulfate. The fraction of particles with rBC or soot cores is between 27 and 51% based on data from a Single Particle Soot Photometer (SP2) and Aerosol Time of Flight Mass Spectrometer (ATOFMS). Secondary organics appear to inhibit subsaturated water uptake in aged particles, while CCN activity is enhanced with photochemical age. A biomass-burning event resulted in suppression of subsaturated hygroscopicity but enhancement in CCN activity, suggesting that BB particles may be nonhygroscopic at subsaturated RH but are important sources of CCN. Aerosol aging and biomass burning can lead to discrepancies between subsaturated and supersaturated hygroscopicity that may be related to mixing state. In the cases of biomass burning aerosol and aged particles coated with secondary material, more than a single parameter representation of subsaturated hygroscopicity and CCN activity is needed

    Ocean Emission Effects on Aerosol-Cloud Interactions: Insights from Two Case Studies

    No full text
    Two case studies are discussed that evaluate the effect of ocean emissions on aerosol-cloud interactions. A review of the first case study from the eastern Pacific Ocean shows that simultaneous aircraft and space-borne observations are valuable in detecting links between ocean biota emissions and marine aerosols, but that the effect of the former on cloud microphysics is less clear owing to interference from background anthropogenic pollution and the difficulty with field experiments in obtaining a wide range of aerosol conditions to robustly quantify ocean effects on aerosol-cloud interactions. To address these limitations, a second case was investigated using remote sensing data over the less polluted Southern Ocean region. The results indicate that cloud drop size is reduced more for a fixed increase in aerosol particles during periods of higher ocean chlorophyll A. Potential biases in the results owing to statistical issues in the data analysis are discussed

    Improvement of precision of numerical calculations using “multiple precision computation” package

    Get PDF
    In this work, the program so-called “Multiple Precision Computation” (MPC) proposed by Smith in 2003 is introduced and embedded into conventional codes for considerably improving the precision of numerical calculations. The procedure is evaluated for improvement and validated by using the comparison between calculations incorporating MPC and those using regular double-precision declarations and results obtained with well-known software Mathematica, respectively. Several representatively fundamental problems are taken into account for illustration

    Facile Fabrication of Fe<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> Composite from Titanium Slag as Adsorbent for As(V) Removal from Aqueous Media

    No full text
    Mixed metal oxide composites have been widely used as adsorbents for the removal of heavy metal ions from wastewater. In this work, Fe2O3/TiO2 composite was sustainably prepared via the treatment of titanium slag with a low-concentration sulfuric acid solution (20%) and used for the removal of As(V) from aqueous solutions. The resulting products were characterized by X-ray diffraction (XRD), N2 adsorption−desorption, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The batch adsorption was employed to investigate the removal efficiency of the Fe2O3/TiO2 adsorbent toward As(V). The Langmuir and Freundlich isotherms were plotted in order to study the adsorption process. The adsorption of As(V) on FeO3/TiO2 fitted well with the Freundlich isotherm model, suggesting a multilayer adsorption process with an adsorption capacity of 68.26 mg·g−1. The adsorption kinetics study demonstrated that the adsorption behavior of the Fe2O3/TiO2 composite for the As(V) was pseudo-second-order. With low-cost preparation and high adsorption capacity, the prepared Fe2O3/TiO2 adsorbent could be used as an effective adsorbent for As(V) removal from contaminated water sources. The approach utilized in this research is viewed as a sustainable route for creating a proficient adsorbent for the purification of water
    corecore