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Abstract. In this work, the program so-called “Multiple Precision Computation” (MPC) proposed by 

Smith in 2003 is introduced and embedded into conventional codes for considerably improving the 

precision of numerical calculations. The procedure is evaluated for improvement and validated by us-

ing the comparison between calculations incorporating MPC and those using regular double-precision 

declarations and results obtained with well-known software Mathematica, respectively. Several 

representatively fundamental problems are taken into account for illustration. 
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1 Introduction 

Recently, numerical computation is an efficient 

tool assisting scientists and engineers to not only 

evaluate the accuracy of experimental results and 

theoretical models but also predict those in 

extreme regimes which are not able to be 

considered in experiments or computed 

analytically due to the limitation of current 

technologies or mathematical techniques. There 

exist a number of programming languages for 

computation such as FORTRAN, Python, C++, 

Java. Among them, FORTRAN is still widely used 

in the community of computational scientists due 

to its simplicity and advantages regarding the 

execution time, supporting libraries such as 

LAPACK and Intel MKL. Note that it is the 

limitation of random access memory (RAM) 

assigned to variables that reduce the precision of 

the numerical results and in several cases prevent 

us from achieving reasonable convergence. For 

instance, it is impossible to obtain an accurate 

ionization rate below 
1010−

au of atomic or 

molecular systems as the electric field strength is 

extremely small [1]. 

To achieve highly precise results, each 

intermediate step has to be neatly considered. 

One may use various commercial software such 

as Mathematica or Matlab. However, their cost is 

relatively high, and it is not easy to integrate such 

programs to our own ones written in different 

programming languages. An alternative way to 

overcome this obstacle is to scrutinize the essence 

of high-precision computation using open-source 

programming languages such as FORTRAN due 

to its simplicity and popularity. In 1978, Brent 

introduced the Multiple-Precision Arithmetic 

Package (MP package) to support high-precision 

calculations [2]. The MP package includes four 

main modules for converting default variable 

declarations in FORTRAN to high-precision 
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declarations. The MP package also provides high-

precision constants and special functions. 

Nonetheless, the execution is more time-

consuming compared with programs using 

default declarations, and the MP package does not 

either support complex numbers. In 1991, Smith 

introduced the Multiple-precision package (FM 

package) based on subroutines in MP, which is 

improved in terms of speed and precision due to 

the use of improved algorithms for computing the 

elementary functions in multiple-precision [3, 4]. 

Initially, the FM package was written in 

FORTRAN 77 and supported for integer, real 

variables, and several fundamental functions. In 

1998, the FM package was extended for 

computing in complex number sets [5]. 

Thereafter, the FM package was updated and 

upgraded consecutively [6–8], and the latest 

version written in FORTRAN 95 can be found on 

Smith’s website [9].  

It is interesting to note that the FM package 

is free to use. Hence, we provide in this paper a 

brief introduction to the FM package and our 

evaluation of the differences between the results 

computed with and without the FM package in 

terms of precision and stability. We consider four 

fundamental problems, including derivatives, 

integrals, finding roots, and solving ordinary 

differential equations. We note that the results 

presented in this paper are preliminary evaluation 

on the ability of applying the FM package for 

further scrutinizing the interaction between 

atoms, molecules, and laser fields at extremely 

weak intensity regime and the thermodynamic 

properties of the ideal Fermi gas confined 

harmonically at the vicinity of 0 K that are not 

able to be computed due to the limitation of the 

accuracy. It is also important to have benchmarks 

for self-assessment. We choose well-known 

Mathematica software since it supports 

fundamental functions at high precision and is 

reliable to be used in academic communities [8, 

10]. 

2 An introduction to the FM package 

In this section, we present the structure of the FM 

package. This package consists of three systematic 

files named FMSAVE.f95, FM.f95, and 

FMZM90.f95 whose description and contents are 

shown in Table 1. Each of them contains libraries 

for multiple-precision operations, global 

variables, and modules for type interfaces. These 

files can be downloaded from the website [9]. 

Then, the users could modify these files to suit 

their desires. However, due to its complexity, the 

users are encouraged to know how to embed 

these files into their codes and make use of them.  

To compile and run a program utilizing the 

FM package, these systematic files, together with 

the main file, have to be put into a similar 

directory. We then compile these files to create 

object files (*.o) before linking them to the main 

program. Note that all programs in this paper 

were compiled by the gfortran compiler on 

Ubuntu OS. 

Table 1. List of systematic files of the FM package 

File Content 

FMSAVE.f95 - Including 488 lines of code.  

- Module for FM internal global 

variables. 

FM.f95 - Including 64,738 lines of code.  

- Subroutine library for 

multiple-precision operations. 

FMZM90.f95 - Including 49,781 lines of code. 

- Module for derived type 

interfaces. 
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3 Results and discussion 

We proceed to illustrate the improvement of 

precision as the FM package is incorporated. The 

results with and without the presence of the FM 

package are shown together with the benchmarks 

obtained by Mathematica [10]. We consider 

several fundamental problems, including first-

order derivative, integral, root finding, and 

ordinary differential equations, since they are 

vital for further numerical calculations in 

computational physics. For the sake of simplicity, 

in the following, we refer to the results obtained 

using conventional double-precision declarations 

(without FM package) and with FM package as 

double precision and FM, respectively. 

The first-order derivative is considered 

using central-difference formula as 

( )
( ) ( )0 0

0'
2

f x H f x H
f x

H

+ − −
=   (1) 

where H is the step size. The two representative 

problems are taken into account to make 

assessments, as shown in Table 2. 

In principle, the smaller the step size H is, 

the better the convergence should be. This fact 

holds well for the case of FM, while the results 

exhibit poor stability for conventional 

declarations, especially at a very small step size 

due to round-off errors. For the smallest step size 

H = 10–12, the FM result is well consistent with that 

obtained by Mathematica up to 24 significant 

digits. Note that such convergence is similar for 

all considered cases that are not shown here.  

The next fundamental problem considered 

is solving ordinary differential equations (ODEs) 

using the four-order Runge-Kutta algorithm [11]. 

Like the previous example, we also take into 

consideration two ODEs with various step sizes 

H, and the results are presented in Table 3.  

Table 2. Numerical results for the first-order derivative in Eq. (1) when using conventional declarations and 

taking into account the FM package. [*] Results obtained by Mathematica 

H Double precision FM 

( ) 22= xf x e  

( )
0 0.25

'
x

f x
=

= 6.59488508280051258739460315125665428661 [*] 

10–4 6.59488512676498 6.59488512676641322732982158830541565345 

10–8 6.59488508247818 6.59488508280051302705 36086712908355727 

10–12 6.59494681087835 6.59488508280051258739460754784670948700 

( ) ( )3sin=f x x  

( )
0 1

'
x

f x
=
=1.62090691760441915220280982232892981119 [*] 

10–4 1.62090691490313 1.62090691490290762421286699967298755213 

10–8 1.62090691979699 1.62090691760441912518769452892194407623 

10–12 1.62092561595273 1.62090691760441915220280955217777687715 

 



Hanh H. Nguyen et al. 

 

32  

 

It is apparent that the results with 

conventional declarations in the two examples 

match relatively well to the exact value, and the 

highest number of significant digits that can be 

reached is 14. However, for a smaller step size 

(i.e., H = 10–5), the numerical results turn out to be 

unstable as previous cases. Meanwhile, as the FM 

package is incorporated, the results are more 

consistent with the benchmarks obtained by 

Mathematica at smaller step sizes, up to 24 

significant digits for H = 10–5.  

We proceed to consider the numerical 

integration using the Gauss-Legendre method. 

Table 3. Numerical results for the ODEs when using conventional declarations and taking into account            

the FM package. [*] Results obtained by Mathematica 

H Double precision FM 

( )' 0.25 9.8 0, 0 0+ − = =y y y  

(1)y = 8.671009303600929164789325534449830625967 [*] 

10–3 8.671009303598439 8.671009303600928916291998188302929912347 

10–4 8.671009303600931 8.671009303600929164764480460618569936114 

10–5 8.671009303601004 8.671009303600929164789323049989031591855 

( ) ( )" 0.25 ' 9.8 0, 0 2, ' 0 0+ − = = =y y y y  

(1)y = 6.515962785596283340842697862200677496133 [*] 

10–3 6.515962785596286 6.515962785596284334832007246788280350613 

10–4 6.515962785596270 6.515962785596283340942078157525720255543 

10–5 6.515962785596305 6.515962785596283340842707800043873632581 

 

Table 4. Numerical results for the integrals when using conventional declarations and taking into account the FM 

package. [*] Results obtained by Mathematica 

N Double precision FM 

2
1

0

xI e dx=   

I = 1.46265174590718160880404858685698815512 [*] 

10 1.46265174590717 1.46265174590718160263058281805599785342 

30 1.46265174590716 1.46265174590718160880404858685698815512 

50 1.46265174590712 1.46265174590718160880404858685698815512 

( )

2

2

1 1

dx
I

x x
=

+
  

I = 0.12101540578511426077255233932716076483 [*] 

10 0.121015405785113 0.12101540578511374723804916382155681231 

30 0.121015405785113 0.12101540578511426077255233932716076483 

50 0.121015405785109 0.12101540578511426077255233932716076483 
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Two representative problems are evaluated and 

shown in Table 4. 

Table 4 indicates that in the case of 

integration using the Gauss-Legendre method, the 

convergence is good and up to 14 significant 

digits even for conventional declarations at a 

small number of quadrature points since the 

Gauss-Legendre algorithm is one of the most 

stable algorithms for numerical integration [11]. 

However, several computational problems 

require much higher levels of convergence, such 

as the calculation of the ionization rate of atomic 

systems for extremely small electric field strength. 

Again, the FM package enables us to significantly 

improve the precision of numerical calculations, 

and the consistency between our calculations and 

Mathematica is around 30 significant digits.  

The next consideration in the present work is 

root-finding problems. Here, we use the Newton-

Ralphson algorithm due to its accuracy and rapid 

convergence compared with other methods [11]. We 

firstly use a bisector to minimize the interval of the 

root, then apply the Newton-Ralphson algorithm to 

precisely determine it. The number of loops used in 

bisection is 35, while that of Newton-Ralphson is 

only 1. The details are presented in Table 5. Again, 

the results obtained from double precision is also 

consistent up to 15 significant digits, while the 

consistency is improved up to 30 significant digits as 

the FM package is added to the main program. 

Obviously, the FM package enables us to extremely 

improve numerical results in comparison with those 

of declared double-precision type. Although these 

four problems cannot cover all features of 

computational physics, they are very fundamental 

and essential for higher levels of numerical study 

associating with more complex obstacles.  

4 Conclusion 

This study aims to present a tool so-called 

“Multiple Precision Computation” for high-

precision scientific calculations. We focus on the 

illustration of the efficiency once the FM package 

is used via a set of four fundamental problems. 

The results deductively indicate a high 

improvement of precision while using the FM 

package in comparison with the cases of 

conventional variable declarations. This paves a 

way to overcome real obstacles in computational 

physics such as the calculation of the ionization 

rate of atomic systems for extremely weak electric 

field or consideration of entropy of fermion gas as 

the absolute temperature decreases very closed to 

0 K. These problems are postponed to the next 

projects. 

 

Table 5. Numerical results for root-finding problems when using conventional declarations and taking into 

account the FM package. [*] Results obtained by Mathematica 

N 
Double precision FM 

5 4 3 213 2 2 4 0+ + + + =x x x x , [ 1,0]x −  

x = -0.8154583398327741821685623818604230656853 [*] 

35 -0.815458339832775 -0.8154583398327741821685623818604230656853 

3 3 0− + − =xe x , [2,3]x  

x = 2.8214393721220788934031913302944851953459 [*] 

35 2.82143937212208 2.8214393721220788934031913302944851953459 
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