
Hue University Journal of Science: Natural Science
Vol. 128, No. 1B, 29–34, 2019

pISSN 1859–1388
eISSN 2615–9678

DOI: 10.26459/hueuni-jns.v128i1B.5301 29

IMPROVEMENT OF PRECISION OF NUMERICAL CALCULATIONS

USING “MULTIPLE PRECISION COMPUTATION” PACKAGE

Hanh H. Nguyen, Tran Duong Anh Tai, Duc T. Hoang, Uyen N. Le,

Tang Thi Bich Van, Vinh N. T. Pham*

Department of Physics, Ho Chi Minh University of Education, 280 An Duong Vuong St., Dist. 5, Ho Chi Minh City,

Vietnam

Correspondence to Vinh N. T. Pham (email: vinhpnt@hcmue.edu.vn)

(Received: 15–5–2019; Accepted: 6–6–2019)

Abstract. In this work, the program so-called “Multiple Precision Computation” (MPC) proposed by

Smith in 2003 is introduced and embedded into conventional codes for considerably improving the

precision of numerical calculations. The procedure is evaluated for improvement and validated by us-

ing the comparison between calculations incorporating MPC and those using regular double-precision

declarations and results obtained with well-known software Mathematica, respectively. Several

representatively fundamental problems are taken into account for illustration.

Keywords: multiple precision computation, computational physics, FM package

1 Introduction

Recently, numerical computation is an efficient

tool assisting scientists and engineers to not only

evaluate the accuracy of experimental results and

theoretical models but also predict those in

extreme regimes which are not able to be

considered in experiments or computed

analytically due to the limitation of current

technologies or mathematical techniques. There

exist a number of programming languages for

computation such as FORTRAN, Python, C++,

Java. Among them, FORTRAN is still widely used

in the community of computational scientists due

to its simplicity and advantages regarding the

execution time, supporting libraries such as

LAPACK and Intel MKL. Note that it is the

limitation of random access memory (RAM)

assigned to variables that reduce the precision of

the numerical results and in several cases prevent

us from achieving reasonable convergence. For

instance, it is impossible to obtain an accurate

ionization rate below
1010−

au of atomic or

molecular systems as the electric field strength is

extremely small [1].

To achieve highly precise results, each

intermediate step has to be neatly considered.

One may use various commercial software such

as Mathematica or Matlab. However, their cost is

relatively high, and it is not easy to integrate such

programs to our own ones written in different

programming languages. An alternative way to

overcome this obstacle is to scrutinize the essence

of high-precision computation using open-source

programming languages such as FORTRAN due

to its simplicity and popularity. In 1978, Brent

introduced the Multiple-Precision Arithmetic

Package (MP package) to support high-precision

calculations [2]. The MP package includes four

main modules for converting default variable

declarations in FORTRAN to high-precision

Hanh H. Nguyen et al.

30

declarations. The MP package also provides high-

precision constants and special functions.

Nonetheless, the execution is more time-

consuming compared with programs using

default declarations, and the MP package does not

either support complex numbers. In 1991, Smith

introduced the Multiple-precision package (FM

package) based on subroutines in MP, which is

improved in terms of speed and precision due to

the use of improved algorithms for computing the

elementary functions in multiple-precision [3, 4].

Initially, the FM package was written in

FORTRAN 77 and supported for integer, real

variables, and several fundamental functions. In

1998, the FM package was extended for

computing in complex number sets [5].

Thereafter, the FM package was updated and

upgraded consecutively [6–8], and the latest

version written in FORTRAN 95 can be found on

Smith’s website [9].

It is interesting to note that the FM package

is free to use. Hence, we provide in this paper a

brief introduction to the FM package and our

evaluation of the differences between the results

computed with and without the FM package in

terms of precision and stability. We consider four

fundamental problems, including derivatives,

integrals, finding roots, and solving ordinary

differential equations. We note that the results

presented in this paper are preliminary evaluation

on the ability of applying the FM package for

further scrutinizing the interaction between

atoms, molecules, and laser fields at extremely

weak intensity regime and the thermodynamic

properties of the ideal Fermi gas confined

harmonically at the vicinity of 0 K that are not

able to be computed due to the limitation of the

accuracy. It is also important to have benchmarks

for self-assessment. We choose well-known

Mathematica software since it supports

fundamental functions at high precision and is

reliable to be used in academic communities [8,

10].

2 An introduction to the FM package

In this section, we present the structure of the FM

package. This package consists of three systematic

files named FMSAVE.f95, FM.f95, and

FMZM90.f95 whose description and contents are

shown in Table 1. Each of them contains libraries

for multiple-precision operations, global

variables, and modules for type interfaces. These

files can be downloaded from the website [9].

Then, the users could modify these files to suit

their desires. However, due to its complexity, the

users are encouraged to know how to embed

these files into their codes and make use of them.

To compile and run a program utilizing the

FM package, these systematic files, together with

the main file, have to be put into a similar

directory. We then compile these files to create

object files (*.o) before linking them to the main

program. Note that all programs in this paper

were compiled by the gfortran compiler on

Ubuntu OS.

Table 1. List of systematic files of the FM package

File Content

FMSAVE.f95 - Including 488 lines of code.

- Module for FM internal global

variables.

FM.f95 - Including 64,738 lines of code.

- Subroutine library for

multiple-precision operations.

FMZM90.f95 - Including 49,781 lines of code.

- Module for derived type

interfaces.

Hue University Journal of Science: Natural Science
Vol. 128, No. 1B, 29–34, 2019

pISSN 1859–1388
eISSN 2615–9678

DOI: 10.26459/hueuni-jns.v128i1B.5301 31

3 Results and discussion

We proceed to illustrate the improvement of

precision as the FM package is incorporated. The

results with and without the presence of the FM

package are shown together with the benchmarks

obtained by Mathematica [10]. We consider

several fundamental problems, including first-

order derivative, integral, root finding, and

ordinary differential equations, since they are

vital for further numerical calculations in

computational physics. For the sake of simplicity,

in the following, we refer to the results obtained

using conventional double-precision declarations

(without FM package) and with FM package as

double precision and FM, respectively.

The first-order derivative is considered

using central-difference formula as

()
() ()0 0

0'
2

f x H f x H
f x

H

+ − −
= (1)

where H is the step size. The two representative

problems are taken into account to make

assessments, as shown in Table 2.

In principle, the smaller the step size H is,

the better the convergence should be. This fact

holds well for the case of FM, while the results

exhibit poor stability for conventional

declarations, especially at a very small step size

due to round-off errors. For the smallest step size

H = 10–12, the FM result is well consistent with that

obtained by Mathematica up to 24 significant

digits. Note that such convergence is similar for

all considered cases that are not shown here.

The next fundamental problem considered

is solving ordinary differential equations (ODEs)

using the four-order Runge-Kutta algorithm [11].

Like the previous example, we also take into

consideration two ODEs with various step sizes

H, and the results are presented in Table 3.

Table 2. Numerical results for the first-order derivative in Eq. (1) when using conventional declarations and

taking into account the FM package. [*] Results obtained by Mathematica

H Double precision FM

() 22= xf x e

()
0 0.25

'
x

f x
=

= 6.59488508280051258739460315125665428661 [*]

10–4 6.59488512676498 6.59488512676641322732982158830541565345

10–8 6.59488508247818 6.59488508280051302705 36086712908355727

10–12 6.59494681087835 6.59488508280051258739460754784670948700

() ()3sin=f x x

()
0 1

'
x

f x
=
=1.62090691760441915220280982232892981119 [*]

10–4 1.62090691490313 1.62090691490290762421286699967298755213

10–8 1.62090691979699 1.62090691760441912518769452892194407623

10–12 1.62092561595273 1.62090691760441915220280955217777687715

Hanh H. Nguyen et al.

32

It is apparent that the results with

conventional declarations in the two examples

match relatively well to the exact value, and the

highest number of significant digits that can be

reached is 14. However, for a smaller step size

(i.e., H = 10–5), the numerical results turn out to be

unstable as previous cases. Meanwhile, as the FM

package is incorporated, the results are more

consistent with the benchmarks obtained by

Mathematica at smaller step sizes, up to 24

significant digits for H = 10–5.

We proceed to consider the numerical

integration using the Gauss-Legendre method.

Table 3. Numerical results for the ODEs when using conventional declarations and taking into account

the FM package. [*] Results obtained by Mathematica

H Double precision FM

()' 0.25 9.8 0, 0 0+ − = =y y y

(1)y = 8.671009303600929164789325534449830625967 [*]

10–3 8.671009303598439 8.671009303600928916291998188302929912347

10–4 8.671009303600931 8.671009303600929164764480460618569936114

10–5 8.671009303601004 8.671009303600929164789323049989031591855

() ()" 0.25 ' 9.8 0, 0 2, ' 0 0+ − = = =y y y y

(1)y = 6.515962785596283340842697862200677496133 [*]

10–3 6.515962785596286 6.515962785596284334832007246788280350613

10–4 6.515962785596270 6.515962785596283340942078157525720255543

10–5 6.515962785596305 6.515962785596283340842707800043873632581

Table 4. Numerical results for the integrals when using conventional declarations and taking into account the FM

package. [*] Results obtained by Mathematica

N Double precision FM

2
1

0

xI e dx=

I = 1.46265174590718160880404858685698815512 [*]

10 1.46265174590717 1.46265174590718160263058281805599785342

30 1.46265174590716 1.46265174590718160880404858685698815512

50 1.46265174590712 1.46265174590718160880404858685698815512

()

2

2

1 1

dx
I

x x
=

+

I = 0.12101540578511426077255233932716076483 [*]

10 0.121015405785113 0.12101540578511374723804916382155681231

30 0.121015405785113 0.12101540578511426077255233932716076483

50 0.121015405785109 0.12101540578511426077255233932716076483

Hue University Journal of Science: Natural Science
Vol. 128, No. 1B, 29–34, 2019

pISSN 1859–1388
eISSN 2615–9678

DOI: 10.26459/hueuni-jns.v128i1B.5301 33

Two representative problems are evaluated and

shown in Table 4.

Table 4 indicates that in the case of

integration using the Gauss-Legendre method, the

convergence is good and up to 14 significant

digits even for conventional declarations at a

small number of quadrature points since the

Gauss-Legendre algorithm is one of the most

stable algorithms for numerical integration [11].

However, several computational problems

require much higher levels of convergence, such

as the calculation of the ionization rate of atomic

systems for extremely small electric field strength.

Again, the FM package enables us to significantly

improve the precision of numerical calculations,

and the consistency between our calculations and

Mathematica is around 30 significant digits.

The next consideration in the present work is

root-finding problems. Here, we use the Newton-

Ralphson algorithm due to its accuracy and rapid

convergence compared with other methods [11]. We

firstly use a bisector to minimize the interval of the

root, then apply the Newton-Ralphson algorithm to

precisely determine it. The number of loops used in

bisection is 35, while that of Newton-Ralphson is

only 1. The details are presented in Table 5. Again,

the results obtained from double precision is also

consistent up to 15 significant digits, while the

consistency is improved up to 30 significant digits as

the FM package is added to the main program.

Obviously, the FM package enables us to extremely

improve numerical results in comparison with those

of declared double-precision type. Although these

four problems cannot cover all features of

computational physics, they are very fundamental

and essential for higher levels of numerical study

associating with more complex obstacles.

4 Conclusion

This study aims to present a tool so-called

“Multiple Precision Computation” for high-

precision scientific calculations. We focus on the

illustration of the efficiency once the FM package

is used via a set of four fundamental problems.

The results deductively indicate a high

improvement of precision while using the FM

package in comparison with the cases of

conventional variable declarations. This paves a

way to overcome real obstacles in computational

physics such as the calculation of the ionization

rate of atomic systems for extremely weak electric

field or consideration of entropy of fermion gas as

the absolute temperature decreases very closed to

0 K. These problems are postponed to the next

projects.

Table 5. Numerical results for root-finding problems when using conventional declarations and taking into

account the FM package. [*] Results obtained by Mathematica

N
Double precision FM

5 4 3 213 2 2 4 0+ + + + =x x x x , [1,0]x −

x = -0.8154583398327741821685623818604230656853 [*]

35 -0.815458339832775 -0.8154583398327741821685623818604230656853

3 3 0− + − =xe x , [2,3]x

x = 2.8214393721220788934031913302944851953459 [*]

35 2.82143937212208 2.8214393721220788934031913302944851953459

Hanh H. Nguyen et al.

34

References

1. Batishchev PA, Tolstikhin OI, Morishita T. Atomic

Siegert states in an electric field: Transverse

momentum distribution of the ionized electrons.

Physical Review A. 2010 08 17;82(2).

2. Brent RP. A Fortran Multiple-Precision Arithmetic

Package. ACM Transactions on Mathematical

Software. 1978 03 01;4(1):57-70.

3. Smith DM. Algorithm 693: a FORTRAN package

for floating-point multiple-precision arithmetic.

ACM Transactions on Mathematical Software. 1991

06 01;17(2):273-283.

4. Smith DM. Efficient multiple-precision evaluation

of elementary functions. Mathematics of Computation.

1989;52:131-134.

5. Smith DM. Algorithm 786: multiple-precision

complex arithmetic and functions. ACM

Transactions on Mathematical Software. 1998 Dec

01;24(4):359-367.

6. Smith D. Using multiple-precision arithmetic.

Computing in Science & Engineering. 2003

07;5(4):88-93.

7. Smith DM. Algorithm 814: Fortran 90 software for

floating-point multiple precision arithmetic,

gamma and related functions. ACM Transactions

on Mathematical Software. 2001 Dec 01;27(4):377-

387.

8. Smith DM. Algorithm 911. ACM Transactions on

Mathematical Software. 2011 02 01;37(4):1-16.

9. Smith DM. Multiple Precision Computation.

https://dmsmith.lmu.build/ (accessed on

08/05/2019)

10. https://www.wolfram.com/mathematica/compare-

mathematica/ (accessed on 08/05/2019)

11. Press WH, Teukolsky SA, Vetterling W.T, Flannery

BP. Numerical Recipes in FORTRAN. Cambridge

University Press, Cambridge; 1992.

https://doi.org/10.1103/physreva.82.023416
https://doi.org/10.1103/physreva.82.023416
https://doi.org/10.1103/physreva.82.023416
https://doi.org/10.1145/355769.355775
https://doi.org/10.1145/355769.355775
https://doi.org/10.1145/108556.108585
https://doi.org/10.1145/108556.108585
https://doi.org/10.1145/293686.293687
https://doi.org/10.1145/293686.293687
https://doi.org/10.1109/mcise.2003.1208649
https://doi.org/10.1145/504210.504211
https://doi.org/10.1145/504210.504211
https://doi.org/10.1145/504210.504211
https://doi.org/10.1145/1916461.1916470
https://doi.org/10.1145/1916461.1916470
https://dmsmith.lmu.build/
https://www.wolfram.com/mathematica/compare-mathematica/
https://www.wolfram.com/mathematica/compare-mathematica/

