26 research outputs found

    Utilization of services provided by village based ethnic minority midwives in mountainous villages of Vietnam

    Get PDF
    Introduction: Since 2011, the Vietnam’s Ministry of Health implemented the ethnic minority midwives (EMMs) scheme in order to increase the utilization of maternal health services by women from ethnic minorities and those living in hard-to-reach mountainous areas. This paper analyzes the utilization of antenatal, delivery, and postpartum care provided by EMMs and reports the key determinants of utilization of EMM services as perceived by service users. Methods: A structured questionnaire was administered in 2015 to all mothers (n=320) who gave birth to a live-born during a 1-year period in 31 villages which had EMM in two provinces, Dien Bien and Kon Tum. A multivariate logistic regression model was used to examine the association between all potential factors and the use of services provided by EMMs. Results: We found that EMMs provided more antenatal care and postnatal care as compared with delivery services, which corresponded to their job descriptions. The results also showed that utilization of antenatal care provided by EMMs was lower than that of postnatal care. The proportion of those who never heard about EMM was high (24%). Among the mothers who knew about EMM services, 33.4% had antenatal checkups, 20.1% were attended during home deliveries, and 57.3% had postnatal visits by an EMM. Key factors that determined the use of EMM services included knowledge of the location of EMM’s house, being aware about EMMs by health workers, trust in services provided by EMMs, and perception that many others mothers in a village also knew about EMM services. Conclusion: EMM seems to be an important mechanism to ensure assistance during home births and postnatal care for ethnic minority groups, who are often resistant to attend health facilities. Building trust and engaging with communities are the key facilitators to increase the utilization of services provided by EMMs. Communication campaigns to raise awareness about EMMs and to promote their services in the village, particularly by other health workers, represent an important strategy to further improve effectiveness of EMM scheme

    Exonuclease III-Assisted Upconversion Resonance Energy Transfer in a Wash-Free Suspension DNA Assay

    Full text link
    © 2017 American Chemical Society. Sensitivity is the key in optical detection of low-abundant analytes, such as circulating RNA or DNA. The enzyme Exonuclease III (Exo III) is a useful tool in this regard; its ability to recycle target DNA molecules results in markedly improved detection sensitivity. Lower limits of detection may be further achieved if the detection background of autofluorescence can be removed. Here we report an ultrasensitive and specific method to quantify trace amounts of DNA analytes in a wash-free suspension assay. In the presence of target DNA, the Exo III recycles the target DNA by selectively digesting the dye-tagged sequence-matched probe DNA strand only, so that the amount of free dye removed from the probe DNA is proportional to the number of target DNAs. Remaining intact probe DNAs are then bound onto upconversion nanoparticles (energy donor), which allows for upconversion luminescence resonance energy transfer (LRET) that can be used to quantify the difference between the free dye and tagged dye (energy acceptor). This scheme simply avoids both autofluorescence under infrared excitation and many tedious washing steps, as the free dye molecules are physically located away from the nanoparticle surface, and as such they remain "dark" in suspension. Compared to alternative approaches requiring enzyme-assisted amplification on the nanoparticle surface, introduction of probe DNAs onto nanoparticles only after DNA hybridization and signal amplification steps effectively avoids steric hindrance. Via this approach, we have achieved a detection limit of 15 pM in LRET assays of human immunodeficiency viral DNA

    Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy

    Full text link
    The dispersal phase that completes the biofilm lifecycle is of particular interest for its potential to remove recalcitrant, antimicrobial tolerant biofilm infections. Here we found that temperature is a cue for biofilm dispersal and a rise by 5 °C or more can induce the detachment of Pseudomonas aeruginosa biofilms. Temperature upshifts were found to decrease biofilm biomass and increase the number of viable freely suspended cells. The dispersal response appeared to involve the secondary messenger cyclic di-GMP, which is central to a genetic network governing motile to sessile transitions in bacteria. Furthermore, we used poly((oligo(ethylene glycol) methyl ether acrylate)-block-poly(monoacryloxy ethyl phosphate)-stabilized iron oxide nanoparticles (POEGA-b-PMAEP@IONPs) to induce local hyperthermia in established biofilms upon exposure to a magnetic field. POEGA-b-PMAEP@IONPs were non-toxic to bacteria and when heated induced the detachment of biofilm cells. Finally, combined treatments of POEGA-b-PMAEP@IONPs and the antibiotic gentamicin reduced by 2-log the number of colony-forming units in both biofilm and planktonic phases after 20 min, which represent a 3.2- and 4.1-fold increase in the efficacy against planktonic and biofilm cells, respectively, compared to gentamicin alone. The use of iron oxide nanoparticles to disperse biofilms may find broad applications across a range of clinical and industrial settings

    Synthesis and Thermoresponsive Solution Properties of Poly[oligo(ethylene glycol) (meth)acrylamide]s: Biocompatible PEG Analogues

    No full text
    A library of (meth)acrylamido (co)polymers was prepared by reacting poly(pentafluorophenyl (meth)- acrylate) with α-amino, ω-methoxy functionalized di(ethylene glycol), tri(ethylene glycol), and poly(ethylene glycol) (PEG)- 350, PEG-750, and PEG-5k, in combination with hexylamine or thyroxine. The resulting copolymers showed an improved solubility in water (higher or absent LCST values) and in alcohols (lower or absent UCST values) than the analogous common series of poly[oligo(ethylene glycol) methyl ether (meth)acrylates]. The polyacrylamido species showed a better solubility than the corresponding polymethacrylamido derivatives of similar molecular weight with all polyacrylamides investigated being water-soluble at temperatures exceeding 90.0 °C. Tunable thermosensitive behavior could be effected by the incorporation of the hydrophobic hexylamide comonomer. Similarly, an acrylamido backbone with grafted oligo(propylene glycol 600) amides exhibited a sharp LCST-type transition around 22.0 °C. The UCST-type transitions of the (meth)acrylamido homopolymers were evaluated in 2-propanol and 1-octanol and were found to increase with an increasing ethylene glycol side chain length, but were essentially independent of the alcohol chain length with polymers exhibiting higher UCST transitions in 2-propanol vs 1-octanol. Cytotoxicity tests on MRC5 fibroblast cells of the di- and tri(ethylene glycol) methyl ether acrylamido homopolymers revealed no toxicity up to concentrations of 10.0 g/L. By employing mixtures of di(ethylene glycol) methyl ether amine and the prohormone thyroxine (T4), water-soluble copolymers containing varying amounts of T4 could be easily synthesized. Because of enhanced solubility, low toxicity, and higher hydrolytic stability of amides versus ester linkages, activated ester polymers in combination with amino-functionalized ethylene glycol based side chains are presented as a versatile platform for highly soluble, biocompatible, bioconjugated materials

    Dispersion stability and biocompatibility of four ligand-exchanged NaYF4: Yb, Er upconversion nanoparticles.

    Full text link
    Surface modification to obtain high dispersion stability and biocompatibility is a key factor for bio-application of upconversion nanoparticles (UCNPs). A systematic study of UCNPs modified with four hydrophilic molecules separately, comparing their dispersion stability in biological buffers and cellular biocompatibility is reported here. The results show that carboxyl-functionalized UCNPs (modified by 3,4-dihydrocinnamic acid (DHCA) or poly(monoacryloxyethyl phosphate (MAEP)) with negative surface charge have superior even-distribution in biological buffers compared to amino-functionalized UCNPs (modified by (aminomethyl)phosphonic (AMPA) or (3-Aminopropyl)triethoxysilane (APTES)) with positive surface charge. Subsequent investigation of cellular interactions revealed high levels of non-targeted cellular uptake of the particles modified with either of the three small molecules (AMPA, APTES, DHCA) and high levels of cytotoxicity when used at high concentrations. The particles were seen to be trapped as particle-aggregates within the cellular cytoplasm, leading to reduced cell viability and cell proliferation, along with dysregulation of the cell cycle as assessed by DNA content measurements. The dramatically reduced proportion of cells in G1 phase and the slightly increased proportion in G2 phase indicates inhibition of M phase, and the appearance of sub-G1 phase reflects cell necrosis. In contrast, MAEP-modified UCNPs are bio-friendly with increased dispersion stability in biological buffers, are non-cytotoxic, with negligible levels of non-specific cellular uptake and no effect on the cell cycle at both low and high concentrations. MAEP-modified UCNPs were further functionalized with streptavidin for intracellular microtubule imaging, and showed clear cytoskeletal structures via their upconversion luminescence. STATEMENT OF SIGNIFICANCE: Upconversion nanoparticles (UCNP) are an exciting potential nanomaterial for bio-applications. Their anti-Stokes luminescence makes them especially attractive to be used as imaging probes and thermal therapeutic reagents. Surface modification is the key to achieving stable and compatible hydrophilic-UCNPs. However, the lack of criteria to assess molecular ligands used for ligand exchange of nanoparticles has hampered the development of surface modification, and further limits UCNP's bio-application. Herein, we report a systematic comparative study of modified-UCNPs with four distinct hydrophilic molecules, assessing each particles' colloidal stability in biological buffers and their cellular biocompatibility. The protocol established here can serve as a potential guide for the surface modification of UCNPs in bio-applications

    A homogeneous DNA assay by recovering inhibited emission of rare earth ions-doped upconversion nanoparticles

    Full text link
    © 2018 Chinese Society of Rare Earths Robust and easy-to-use kits specific for a particular DNA sequence are desirable for early detection of diseases. However, the major challenge with these tests is often the background fluorescence artifacts arising from biological species due to employing UV and visible range of light. Here, we have reported a near-infrared (NIR) fluorescence “turn-on” kit based on rare earth ions doped nanoparticles, upconversion nanoparticles (UCNPs), and gold nanoparticles (AuNPs), which forms a fluorescence-quencher pair, brought together by a hairpin structure through the formation of double-stranded DNA (dsDNA), with quenched upconversion luminescence. In the presence of analytes, the molecular beacon opens to push AuNPs away from UCNPs, with a distance longer than the efficient quenching distance, so that the inhibited upconversion emission will be restored. We demonstrated that this assay provides a homogeneous, facile, simple and highly selective HIV-1 based DNA detection system with restore efficiency up to 85%, and the detection limit of 5 nm

    Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles†

    Full text link
    Here we quantitatively investigate the competitive adsorption of polymers bearing phosphate, carboxylic acid and sulphonic acid anchoring groups onto the surface of UCNPs and study their binding strength to identify the best conjugation strategy.</p

    Greenhouse gas emissions from passive composting of manure and digestate with crop residues and biochar on small-scale livestock farms in Vietnam

    No full text
    This study investigated the effects of different mixing ratios of crop residues and biochar with liquid digestate from anaerobically treated pig manure on CH4, CO2, and N2O emissions over 84 days in a system of passive aeration composting, resembling typical Vietnamese solid manure storage conditions. Two treatments with solid manure were included for comparison. The results showed that C losses through CH4 and CO2 emissions accounted for 0.06–0.28% and 1.9–26.7%, respectively, of initial total C. CH4 losses accounted for just 0.4–4.0% of total C losses. Total N losses accounted for 27.1–40% of initial total N in which N2O emissions corresponded to 0.01–0.57% of initial total N, and hence accounted for only 0.1–1.8% of total N losses. It is assumed that the remainder was either the result of denitrification losses to N2 or ammonia volatilization. The composting of biochar (B) or crop residue with digestate (D) showed significantly lower CH4 and N2O emissions compared with composting manure (M) (p < .05). The composting of digestate with biochar showed significantly lower CO2 and CH4 emissions and significantly higher N2O emissions compared to the composting of digestate with rice straw (RS) (p < .05). The combined composting of digestate with biochar and rice straw (D + B + RS5:0.3:1) showed significantly reduced N2O emissions compared with composting digestate with biochar with alone (p < .05). Composting sugar cane bagasse (SC) with digestate (D + SC) significantly reduced CH4 and N2O emissions compared with the composting of rice straw with digestate (D + RS3.5:1 and D + RS5:1) (p < .05)

    Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release

    Full text link
    Nanoparticle size, surface charge and material composition are known to affect the uptake of nanoparticles by cells. However, whether nanoparticle shape affects transport across various barriers inside the cell remains unclear. Here we used pair correlation microscopy to show that polymeric nanoparticles with different shapes but identical surface chemistries moved across the various cellular barriers at different rates, ultimately defining the site of drug release. We measured how micelles, vesicles, rods and worms entered the cell and whether they escaped from the endosomal system and had access to the nucleus via the nuclear pore complex. Rods and worms, but not micelles and vesicles, entered the nucleus by passive diffusion. Improving nuclear access, for example with a nuclear localization signal, resulted in more doxorubicin release inside the nucleus and correlated with greater cytotoxicity. Our results therefore demonstrate that drug delivery across the major cellular barrier, the nuclear envelope, is important for doxorubicin efficiency and can be achieved with appropriately shaped nanoparticles

    Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles

    Full text link
    The rise of hospital-acquired infections, also known as nosocomial infections, is a growing concern in intensive healthcare, causing the death of hundreds of thousands of patients and costing billions of dollars worldwide every year. In addition, a decrease in the effectiveness of antibiotics caused by the emergence of drug resistance in pathogens living in biofilm communities poses a significant threat to our health system. The development of new therapeutic agents is urgently needed to overcome this challenge. We have developed new dual action polymeric nanoparticles capable of storing nitric oxide, which can provoke dispersal of biofilms into an antibiotic susceptible planktonic form, together with the aminoglycoside gentamicin, capable of killing the bacteria. The novelty of this work lies in the attachment of NO-releasing moiety to an existing clinically used drug, gentamicin. The nanoparticles were found to release both agents simultaneously and demonstrated synergistic effects, reducing the viability of Pseudomonas aeruginosa biofilm and planktonic cultures by more than 90% and 95%, respectively, while treatments with antibiotic or nitric oxide alone resulted in less than 20% decrease in biofilm viability
    corecore