127 research outputs found
Fate Of Abstracts Published In The Proceedings Of The First Annual Perinatal Society Of Australia And New Zealand Congress In 1997
Objectives: To examine the fate of research presented at the first annual Perinatal Society of Australia and New Zealand (PSANZ) Congress in 1997, by determining: the rate of publication in peer-reviewed biomedical journals; publication rate by discipline; journals in which work was published; concordance for aims, conclusions, authors and number of study subjects; and time from presentation to publication. Methods: A MEDLINE search was conducted for any publication in a peer-reviewed journal resulting from a publishable abstract from the proceedings of the first annual PSANZ Congress in 1997. Searching was completed 42 months postcongress. The concordance of aims, conclusions, authors and number of subjects between abstract and published paper was determined. Results: There were 172 publishable abstracts in the proceedings of the PSANZ Congress in 1997, and 78 (45%) were published as 83 articles. Basic sciences had the highest publication rate (67%) and midwifery the lowest (20%). Articles were published in 41 journals, with one-third of the articles in three paediatric journals. There was a match with aims in 75%, and with conclusions in 65%. There were 47/77 with the same number of subjects, 20/77 with more and 10/77 with fewer. There were 22 articles with one author added, 12 had more than one author added, 11 had one author removed and five had more than one author removed. Median time-to-publication was 18 months (interquartile range 9-26 months). Conclusions: A publication rate of 45% is comparable to other conferences. Basic science and neonatology had the highest publication rates. There were considerable differences between abstract and published article in terms of aims, conclusions, number of subjects and authors
An advanced expiratory circuit for the recovery of perfluorocarbon liquid from non-saturated perfluorocarbon vapour during partial liquid ventilation: an experimental model
BACKGROUND: The loss of perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid. Using a substantially modified design of our previously described condenser, we aimed to determine how much perfluorocarbon liquid could be recovered from gases containing PFC and water vapour, at concentrations found during partial liquid ventilation, and to determine if the amount recovered differed with background flow rate (at flow rates suitable for use in neonates). METHODS: The expiratory line of a standard ventilator circuit set-up was mimicked, with the addition of two condensers. Perfluorocarbon (30 mL of FC-77) and water vapour, at concentrations found during partial liquid ventilation, were passed through the circuit at a number of flow rates and the percentage recovery of the liquids measured. RESULTS: From 14.2 mL (47%) to 27.3 mL (91%) of the infused 30 mL of FC-77 was recovered at the flow rates studied. Significantly higher FC-77 recovery was obtained at lower flow rates (ANOVA with Bonferroni's multiple comparison test, p < 0.0001). As a percentage of the theoretical maximum recovery, 64 to 95% of the FC-77 was recovered. Statistically significantly less FC-77 was recovered at 5 Lmin(-1 )(ANOVA with Bonferroni's multiple comparison test, p < 0.0001). Amounts of perfluorocarbon vapour recovered were 47%, 50%, 81% and 91% at flow rates of 10, 5, 2 and 1 Lmin(-1), respectively. CONCLUSION: Using two condensers in series 47% to 91% of perfluorocarbon liquid can be recovered, from gases containing perfluorocarbon and water vapour, at concentrations found during partial liquid ventilation
Developing an economic led approach to zero carbon housing design through integration and substitution of traditional building materials
Zero carbon homes have met with mixed reactions from key stakeholders within the housing and energy sectors, with many bespoke zero carbon designs being rejected as commercially unviable. This paper draws on research conducted with The University of Surrey and Zedfactory Architects to outline key factors which should be considered in order to facilitate the adoption of a more commercialised approach to zero carbon design. Key design criteria for zero carbon homes are outlined before presenting a housing model designed to provide the best balance between the financial, technical and social elements involved. The paper then demonstrates the importance of reducing the additional costs associated with zero carbon design through integrating energy efficiency and generation technologies into the building fabric; by substituting the use of traditional building materials with energy generating ones it is possible to create both an energy and economically efficient housing model. The proposed energy system adopts an integrated approach to the selection of space heating, water heating and ventilation technologies in order to create a design that is as user friendly as possible. By adopting this approach it is argued that it is possible to develop a model which does not require major changes in household behaviour patterns to work. The paper also highlights the importance of carefully balancing energy production and exportation to grid connected sources to develop a zero carbon home that can substantially reduce the financial burdens of rising energy costs
Vortex Polarity Switching in Magnets with Surface Anisotropy
Vortex core reversal in magnetic particle is essentially influenced by a
surface anisotropy. Under the action of a perpendicular static magnetic field
the vortex core undergoes a shape deformationof pillow- or barrel-shaped type,
depending on the type of the surface anisotropy. This deformation plays a key
point in the switching mechanism: We predict that the vortex polarity switching
is accompanied (i) by a linear singularity in case of Heisenberg magnet with
bulk anisotropy only and (ii) by a point singularities in case of surface
anisotropy or exchange anisotropy. We study in details the switching process
using spin-lattice simulations and propose a simple analytical description
using a wired core model, which provides an adequate description of the Bloch
point statics, its dynamics and the Bloch point mediated switching process. Our
analytical predictions are confirmed by spin-lattice simulations for Heisenberg
magnet and micromagnetic simulations for nanomagnet with account of a dipolar
interaction.Comment: 17 pages, 15 figure
Increased Oxidative Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background Schools Sites in London
As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OPAA m−3) and glutathione (OPGSH m−3) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM1.9–10.2. However, when expressed per unit mass of particles OPAA µg−1 showed no significant dependence upon particle size, while OPGSH µg−1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types.\ud
\u
Intracellular Spatial Localization Regulated by the Microtubule Network
The commonly recognized mechanisms for spatial regulation inside the cell are membrane-bounded compartmentalization and biochemical association with subcellular organelles. We use computational modeling to investigate another spatial regulation mechanism mediated by the microtubule network in the cell. Our results demonstrate that the mitotic spindle can impose strong sequestration and concentration effects on molecules with binding affinity for microtubules, especially dynein-directed cargoes. The model can recapitulate the essence of three experimental observations on distinct microtubule network morphologies: the sequestration of germ plasm components by the mitotic spindles in the Drosophila syncytial embryo, the asymmetric cell division initiated by the time delay in centrosome maturation in the Drosophila neuroblast, and the diffusional block between neighboring energids in the Drosophila syncytial embryo. Our model thus suggests that the cell cycle-dependent changes in the microtubule network are critical for achieving different spatial regulation effects. The microtubule network provides a spatially extensive docking platform for molecules and gives rise to a “structured cytoplasm”, in contrast to a free and fluid environment
Intraaortic Balloon Pump Counterpulsation and Cerebral Autoregulation: an observational study
The use of Intra-aortic counterpulsation is a well established supportive therapy for patients in cardiac failure or after cardiac surgery. Blood pressure variations induced by counterpulsation are transmitted to the cerebral arteries, challenging cerebral autoregulatory mechanisms in order to maintain a stable cerebral blood flow. This study aims to assess the effects on cerebral autoregulation and variability of cerebral blood flow due to intra-aortic balloon pump and inflation ratio weaning
Recommended from our members
The LRRK2 signalling system
The LRRK2 gene is a major contributor to genetic risk for Parkinson's disease and understanding the biology of the leucine-rich repeat kinase 2 (LRRK2, the protein product of this gene) is an important goal in Parkinson's research. LRRK2 is a multi-domain, multi-activity enzyme and has been implicated in a wide range of signalling events within the cell. Because of the complexities of the signal transduction pathways in which LRRK2 is involved, it has been challenging to generate a clear idea as to how mutations and disease associated variants in this gene are altered in disease. Understanding the events in which LRRK2 is involved at a systems level is therefore critical to fully understand the biology and pathobiology of this protein and is the subject of this review
Sparse Gamma Rhythms Arising through Clustering in Adapting Neuronal Networks
Gamma rhythms (30–100 Hz) are an extensively studied synchronous brain state responsible for a number of sensory, memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons
- …