177 research outputs found

    Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels

    Get PDF
    Fruit peels have a diverse range of phytochemicals including carotenoids, vitamins, dietary fibres, and phenolic compounds, some with remarkable antioxidant properties. Nevertheless, the comprehensive screening and characterization of the complex array of phenolic compounds in different fruit peels is limited. This study aimed to determine the polyphenol content and their antioxidant potential in twenty different fruit peel samples in an ethanolic extraction, including their comprehensive characterization and quantification using the LC-MS/MS and HPLC. The obtained results showed that the mango peel exhibited the highest phenolic content for TPC (27.51 ± 0.63 mg GAE/g) and TFC (1.75 ± 0.08 mg QE/g), while the TTC (9.01 ± 0.20 mg CE/g) was slightly higher in the avocado peel than mango peel (8.99 ± 0.13 mg CE/g). In terms of antioxidant potential, the grapefruit peel had the highest radical scavenging capacities for the DPPH (9.17 ± 0.19 mg AAE/g), ABTS (10.79 ± 0.56 mg AAE/g), ferric reducing capacity in FRAP (9.22 ± 0.25 mg AA/g), and total antioxidant capacity, TAC (8.77 ± 0.34 mg AAE/g) compared to other fruit peel samples. The application of LC-ESI-QTOF-MS/MS tentatively identified and characterized a total of 176 phenolics, including phenolic acids (49), flavonoids (86), lignans (11), stilbene (5) and other polyphenols (25) in all twenty peel samples. From HPLC-PDA quantification, the mango peel sample showed significantly higher phenolic content, particularly for phenolic acids (gallic acid, 14.5 ± 0.4 mg/g) and flavonoids (quercetin, 11.9 ± 0.4 mg/g), as compared to other fruit peel samples. These results highlight the importance of fruit peels as a potential source of polyphenols. This study provides supportive information for the utilization of different phenolic rich fruit peels as ingredients in food, feed, and nutraceutical products

    The Impact of Antioxidant Supplementation and Heat Stress on Carcass Characteristics, Muscle Nutritional Profile and Functionality of Lamb Meat

    Get PDF
    The impact of antioxidant supplementation and short-term heat stress on lamb body weight gain, meat nutritional profile and functionality (storage stability of lipids and colour) of lamb meat was investigated. A total of 48 crossbred ((Merino × Border Leicester) × Dorset) lambs (42 ± 2 kg body weight, 7 mo age) were randomly allocated to three dietary treatments (n = 16) by liveweight (LW) that differed in dosage of vitamin E and selenium (Se) in the diet. Vitamin E and Se levels in the control (CON), moderate (MOD) and supranutritional (SUP) dietary treatments were 28, 130 and 228 mg/kg DM as α-tocopherol acetate and 0.16, 0.66 and 1.16 mg Se as SelPlex™/kg DM, respectively. After four weeks of feeding in individual pens, including one week of adaptation, lambs were exposed to two heat treatments. Animals were moved to metabolism cages for one week and subjected to heat treatments: thermoneutral (TN; 18–21 °C and 40–50% relative humidity) and heat stress (HS; 28–40 °C and 30–40% relative humidity) conditions, respectively. Final LW and hot carcass weight were influenced by dietary treatments with higher final live weight (FLW) (p = 0.05; 46.8 vs. 44.4 and 43.8 kg, respectively) and hot carcass weight (HCW) (p = 0.01; 22.5 vs. 21.3 and 21.0 kg, respectively) recorded in lambs fed the SUP as opposed to the CON and MOD diets. Vitamin E concentration in the longissimus lumborum (LL) muscle tended to be higher in lambs fed MOD or SUP diets than the CON group. Lipid oxidation of aged meat at 72 h of simulated retail display was reduced by antioxidant supplementation. Short-term (one week) heat stress treatment significantly increased muscle linoleic acid and total omega-6 concentrations compared with the CON group. The results demonstrate that four-week antioxidant supplementation at the SUP level improved animal productivity by increasing LW and carcass weight and the functionality of meat exhibited by reduced lipid oxidation. An increase in muscle omega-6 fatty acid concentration from short-term heat stress may induce oxidative stress via proinflammatory action

    LC-MS/MS Characterization of Phenolic Metabolites and Their Antioxidant Activities from Australian Native Plants

    Get PDF
    Polyphenols are considered vital bioactive compounds beneficial for human health. The Australian flora is enriched with polyphenols which are not fully characterized yet. Thus, the main objective of this study was to identify and characterize the Australian native sandalwood nuts, wattle seeds, lemongrass, and old man saltbush for phenolic compounds and their antioxidant activities. In this study, we tentatively identified a total of 155 phenolic compounds including 25 phenolic acids, 55 flavonoids, 22 isoflavonoids, 22 tannins, 22 lignans, 33 stilbenes, 33 coumarins and derivatives, 12 tyrosols and derivatives, and 6 phenolic terpenes. The highest total phenolic content (TPC) (15.09 ± 0.88 mg GAE/g) was quantified in lemongrass, while the lowest TPC (4.17 ± 0.33 mg GAE/g) was measured in wattle seeds. The highest total flavonoid content (TFC) and total condensed tannins (TCT) were measured in lemongrass and wattle seeds, respectively. A total of 18 phenolic metabolites were quantified/semi-quantified in this experiment. Lemongrass contains a vast number of phenolic metabolites

    Characterization, Antioxidant Potential, and Pharmacokinetics Properties of Phenolic Compounds from Native Australian Herbs and Fruits

    Get PDF
    In recent decades, plant bioactive phenolic compounds gained much attention due to their various health benefits. Therefore, this study aimed to analyze native Australian river mint (Mentha australis), bush mint (Mentha satureioides), sea parsley (Apium prostratum), and bush tomatoes (Solanum centrale) for their bioactive metabolites, antioxidant potential, and pharmacokinetics properties. LC-ESI-QTOF-MS/MS was applied to elucidate these plants’ composition, identification, and quantification of phenolic metabolites. This study tentatively identified 123 phenolic compounds (thirty-five phenolic acids, sixty-seven flavonoids, seven lignans, three stilbenes, and eleven other compounds). Bush mint was identified with the highest total phenolic content (TPC—57.70 ± 4.57 mg GAE/g), while sea parsley contained the lowest total phenolic content (13.44 ± 0.39 mg GAE/g). Moreover, bush mint was also identified with the highest antioxidant potential compared to other herbs. Thirty-seven phenolic metabolites were semi-quantified, including rosmarinic acid, chlorogenic acid, sagerinic acid, quinic acid, and caffeic acid, which were abundant in these selected plants. The most abundant compounds’ pharmacokinetics properties were also predicted. This study will develop further research to identify these plants’ nutraceutical and phytopharmaceutical potential

    Increasing the Dietary Concentration of Lupinus albus L. Decreased Feed Intake and Daily Gain of Immunocastrated Male Pigs

    Get PDF
    An experiment was conducted to determine the appropriate dietary concentration of albus lupins that would lower feed intake and decrease backfat while optimizing the effect on the growth rate of immunocastrated male pigs. The pigs were fed albus lupins (varying from 0 to 200 g/kg) from 2 weeks after the last immunization against GnRF for 14 d prior to slaughter (where d 0 is the day of the last immunization against GnRF). Increasing the dietary albus lupin concentration decreased daily gain for d 15 to 28 (p = 0.004). Daily feed intake also decreased as the concentration of the albus lupins increased for d 15 to 28 (p < 0.001). Carcass weight and backfat decreased as the concentration of dietary albus lupins increased (p = 0.011 and p = 0.024, respectively). The albus lupin concentration to maximize growth rate, minimize feed intake, maximize carcass weight and minimize backfat depth was 120, 142, 62.7 and 138 g/kg, respectively

    Identification and characterization of anthocyanins and non-anthocyanin phenolics from Australian native fruits and their antioxidant, antidiabetic, and anti-Alzheimer potential

    Get PDF
    Polyphenols are vital bioactive constituents that have beneficial effects on human health. The aim of this study was to characterize the biologically active phenolic metabolites in Australian native commercial fruits (Kakadu plum, Davidson’s plum, quandong peach, and muntries) and their antioxidant, α-glucosidase, and acetylcholinesterase inhibition activities. Polyphenols were measured through total phenolic content (TPC), total flavonoid content (TFC), total condensed tannin (TCT), and total monomeric anthocyanin content (TMAC). Moreover, different in-vitro biological assays (DPPH, ABTS, FICA, OH-RSA, α-glucosidase, and acetylcholinesterase inhibition activities) were conducted to measure the antioxidant, anti-diabetic, and anti-Alzheimer’s potential of these selected fruits. LC-ESI-QTOF-MS/MS was implied for identification and quantification purposes. In this study, a total of 307 bioactive metabolites (51 phenolic acids, 194 flavonoids, 15 tannins, 23 other polyphenols, 5 stilbenes, 12 lignans, and 7 terpenoids) were putatively identified. A total of 41 phenolic compounds were quantified/semi-quantified. Kakadu plum was identified with a higher concentration of polyphenols and biological activities compared to Davidson plum, quandong peach, and muntries. Molecular docking was also conducted to discover the actual role of the most abundant phenolic metabolites in the α-glucosidase and acetylcholinesterase inhibition activities

    An Extended Photoperiod Increases Milk Yield and Decreases Ovulatory Activity in Dairy Goats

    Get PDF
    Short day length is associated with reduced milk production in dairy ruminants. Dairy ruminants have been kept in lit sheds during winter to extend the day length and stimulate milk production. However, there studies are few on the effect of an extended photoperiod on the ensuing reproductive performance of dairy goats. The aim of this study was to examine the effect of long day photoperiod (LDPP) and exposure to bucks on milk production and plasma progesterone and prolactin in dairy goats. The study was conducted in 122 non-pregnant lactating dairy goats over 18 weeks from April to August (late autumn and winter in the Southern Hemisphere). The goats were kept in open sided sheds in which the control treatment received ambient lighting while the LDPP treatment received 16 h of light, including artificial lighting. In June, July and August synchronised does were randomly assigned each month to the presence or absence of a buck and ovulatory activity determined from plasma progesterone. Plasma progesterone concentrations were reduced (0.73 vs. 0.46 pmol, p < 0.001) while prolactin concentrations were increased (0.095 vs. 1.33 ng/mL, p < 0.001) in LDPP goats. The former response was most marked in late winter (0.58 vs. 0.004 pmol, p < 0.001) indicating a lack of functional corpora lutea. While there was no overall effect of buck exposure on plasma progesterone concentrations there was a three-way interaction such that plasma progesterone concentrations were increased (p < 0.05) by exposure to bucks in LDPP goats in August (late winter) but not at other times. Milk production was increased in LDPP goats over the latter stages of the study (1. 55 vs. 1.82 L/d, p < 0.05). Also, persistency of lactation was greater in LDPP goats with fewer goats drying off (13 vs. 0%, p < 0.05). These findings suggest that LDPP can increase milk production and persistence while decreasing ovulatory activity in dairy goats

    A Meta-Analysis of the Effectiveness of High, Medium, and Low Voltage Electrical Stimulation on the Meat Quality of Small Ruminants

    Get PDF
    The current study is a meta-analysis of the effects of electrical stimulation (ES, n = 28 papers) with different voltages combined with different ageing periods (0–3, 4–7, and 8–14 days) on the meat quality of small ruminants. A comprehensive search for published studies on meat quality of small ruminants investigating the application of low, medium, and high voltage electrical stimulation, was performed using Google Scholar, ScienceDirect, PubMed, and Scopus databases. Forest plots, funnel plots, and other statistical tools and tests were used in the study to analyze the results. Electrical stimulation significantly reduced ultimate pH (p < 0.001), Warner–Bratzler shear force (WBSF) (p < 0.001), cooking loss (p < 0.05), and purge loss (p < 0.001). In addition, sarcomere length (p < 0.01), myofibrillar-fragmentation index (MFI) (p < 0.001), and color (L*, a*, b*) (p < 0.001) showed higher values in meat subjected to ES as compared with the control group. In conclusion, the meta-analysis revealed statistical proof of beneficial effects of ES on meat quality of small ruminants in terms of ultimate pH, tenderness, enhanced proteolysis, and higher colorimetric values

    Digital integration and automated assessment of eye-tracking and emotional response data using the biosensory app to maximize packaging label analysis

    Get PDF
    New and emerging non-invasive digital tools, such as eye-tracking, facial expression and physiological biometrics, have been implemented to extract more objective sensory responses by panelists from packaging and, specifically, labels. However, integrating these technologies from different company providers and software for data acquisition and analysis makes their practical application difficult for research and the industry. This study proposed a prototype integration between eye tracking and emotional biometrics using the BioSensory computer application for three sample labels: Stevia, Potato chips, and Spaghetti. Multivariate data analyses are presented, showing the integrative analysis approach of the proposed prototype system. Further studies can be conducted with this system and integrating other biometrics available, such as physiological response with heart rate, blood, pressure, and temperature changes analyzed while focusing on different label components or packaging features. By maximizing data extraction from various components of packaging and labels, smart predictive systems can also be implemented, such as machine learning to assess liking and other parameters of interest from the whole package and specific components
    • …
    corecore