1,777 research outputs found

    Turbulence measurements using the laser Doppler velocimeter

    Get PDF
    The photomultiplier signal representing the axial velocity of water within a glass pipe is examined. It is shown that with proper analysis of the photomultiplier signal, the turbulent information that can be obtained in liquid flows is equivalent to recent hot film studies. In shear flows the signal from the laser Doppler velocimeter contains additional information which may be related to the average shear

    The electronic structure of pyrazine. Configuration interaction calculations using an extended basis

    Get PDF
    Extensive ab initio double zeta basis set configuration interaction calculations have been carried out on the nπ^∗ and ππ^∗ states of pyrazine as well as on the low‐lying n and π cations. The calculations corroborate the validity of the valence bond (VB) model for the interaction of lone pair excitations proposed earlier by Wadt and Goddard. Good agreement (errors of ∼0.2 eV) with experiment is obtained (except for the higher‐lying 1ππ∗ states that possess significant ionic character). The calculations indicate that the order of increasing ionization potentials is ^2A_g(n), 2B_(1g)(π), 2B_(1u)(n), and ^2B_(2g)(π). The forbidden 1 ^1B_(2g)(nπ^∗) state is predicted to be 1.30 eV above the allowed 1^ 1B_(3u)(nπ^∗) state. Finally, the calculations indicate that the adiabatic excitation energies to the 1^ 3B_1(nπ^∗) and 1^ 3A_1(ππ^∗) states in pyridine should be nearly degenerate at ∼3.6 eV

    Distribution of E/N and N sub e in a cross-flow electric discharge laser

    Get PDF
    The spatial distribution of the ratio of electric field to neutral gas density on a flowing gas, multiple pin-to-plane discharge was measured in a high-power, closed loop laser. The laser was operated at a pressure of 140 torr (1:7:20, CO2, N2, He) with typically a 100 meter/second velocity in the 5 x 8 x 135 centimeter discharge volume. E/N ratios ranged from 2.7 x 10 to the minus 16th power to 1.4 x 10 to the minus 16th power volts/cu cm along the discharge while the electron density ranged from 2.8 x 10 to the 10th power to 1.2 x 10 to the 10th power cm/3

    Small-signal gain diagnostic measurements in a flowing CO2 pin discharge laser

    Get PDF
    Small-signal gain diagnostic measurements were conducted on closed loop, high power, carbon dioxide laser to assess the coupling between gas flow velocity and resonator saturation. Parameters investigated included optical cavity and discharge power. Results of gain measurements within and downstream of the excitation volume are presented for a laser gas composition He:N2:CO2 of 10:7:1 at 90 torr. The gain at constant discharge power was observed to be dependent upon discharge power level and time. An important result of this study is that the effects of gain swept downstream of the discharge region must be considered in the resonator design if efficient extraction of stored optical energy is desired

    Turbulent transport measurements with a laser Doppler velocimeter

    Get PDF
    The power spectrum of phototube current from a laser Doppler velocimeter operating in the heterodyne mode has been computed. The spectrum is obtained in terms of the space time correlation function of the fluid. The spectral width and shape predicted by the theory are in agreement with experiment. For normal operating parameters the time average spectrum contains information only for times shorter than the Lagrangian integral time scale of the turbulence. To examine the long time behavior, one must use either extremely small scattering angles, much longer wavelength radiation or a different mode of signal analysis, e.g., FM detection

    Space station power system requirements

    Get PDF
    Presented is an overview of the requirements on which the Space Station Electric Power System is based as well as a summary of the design itself. The current design, which is based on silicon photovoltaic arrays, NiH2 batteries, and 20 kHz distribution technology, meets all of the requirements

    Nonempirical Calculations on Excited States: The Formaldehyde Molecule

    Get PDF
    A series of calculations on the excited states of formaldehyde using excitation operator techniques are presented. As in ethylene, the effect of sigma–pi interaction on the "pi-->pi*"(1A1) excitation is rather large, decreasing the calculated excitation energy from 14.89 to 12.03 eV and the oscillator strength from 1.01 to 0.30. The coupling has little effect on the corresponding triplet state (3A1). The next higher approximation reduces the excitation energy to 11.22 eV and the oscillator strength to 0.21. The effect of the coupling on the "n-->pi*"(1,3A2) excitations is not as large as that for the 1A1 state, lowering the excitation energies for both the singlet and triplet by ~0.5 eV. Similar results were obtained for the "sigma-->pi*"(1,3B1) excitations. Trends are observed in calculations on corresponding states in ethylene and formaldehyde. Numerous one-electron properties are calculated for the excited states. The results are in moderate agreement with experiment; a major source of error probably arises from the use of an unoptimized, minimum basis set LCAO(STO)–MO–SCF wavefunction

    One-Electron Ionization of Multielectron Systems in Strong Nonresonant Laser Fields

    Full text link
    We present a novel approach to calculating strong field ionization dynamics of multielectron molecular targets. Adopting a multielectron wavefunction ansatz based on field-free ab initio neutral and ionic multielectron states, a set of coupled time-dependent single-particle Schroedinger equations describing the neutral amplitude and continuum electron are constructed. These equations, amenable to direct numerical solution or further analytical treatment, allow one to study multielectron effects during strong field ionization, recollision, and high harmonic generation. We apply the method to strong field ionization of CO_2, and suggest the importance of intermediate core excitation to explain previous failure of analytical models to reproduce experimental ionization yields for this molecule.Comment: 25 pages, 6 figure

    Creation of Rydberg Polarons in a Bose Gas

    Get PDF
    We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a pp-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral lineshape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, nn. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fr\"{o}hlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with FDA.Comment: 5 pages, 3 figure

    Theory of excitation of Rydberg polarons in an atomic quantum gas

    Get PDF
    We present a quantum many-body description of the excitation spectrum of Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with functional determinant theory, and we extend this technique to describe Rydberg polarons of finite mass. Mean-field and classical descriptions of the spectrum are derived as approximations of the many-body theory. The various approaches are applied to experimental observations of polarons created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate.Comment: 14 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1706.0371
    corecore