838 research outputs found
Distribution of E/N and N sub e in a cross-flow electric discharge laser
The spatial distribution of the ratio of electric field to neutral gas density on a flowing gas, multiple pin-to-plane discharge was measured in a high-power, closed loop laser. The laser was operated at a pressure of 140 torr (1:7:20, CO2, N2, He) with typically a 100 meter/second velocity in the 5 x 8 x 135 centimeter discharge volume. E/N ratios ranged from 2.7 x 10 to the minus 16th power to 1.4 x 10 to the minus 16th power volts/cu cm along the discharge while the electron density ranged from 2.8 x 10 to the 10th power to 1.2 x 10 to the 10th power cm/3
Theory of excitation of Rydberg polarons in an atomic quantum gas
We present a quantum many-body description of the excitation spectrum of
Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with
functional determinant theory, and we extend this technique to describe Rydberg
polarons of finite mass. Mean-field and classical descriptions of the spectrum
are derived as approximations of the many-body theory. The various approaches
are applied to experimental observations of polarons created by excitation of
Rydberg atoms in a strontium Bose-Einstein condensate.Comment: 14 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1706.0371
Creation of Rydberg Polarons in a Bose Gas
We report spectroscopic observation of Rydberg polarons in an atomic Bose
gas. Polarons are created by excitation of Rydberg atoms as impurities in a
strontium Bose-Einstein condensate. They are distinguished from previously
studied polarons by macroscopic occupation of bound molecular states that arise
from scattering of the weakly bound Rydberg electron from ground-state atoms.
The absence of a -wave resonance in the low-energy electron-atom scattering
in Sr introduces a universal behavior in the Rydberg spectral lineshape and in
scaling of the spectral width (narrowing) with the Rydberg principal quantum
number, . Spectral features are described with a functional determinant
approach (FDA) that solves an extended Fr\"{o}hlich Hamiltonian for a mobile
impurity in a Bose gas. Excited states of polyatomic Rydberg molecules
(trimers, tetrameters, and pentamers) are experimentally resolved and
accurately reproduced with FDA.Comment: 5 pages, 3 figure
Controlling the accuracy of the density matrix renormalization group method: The Dynamical Block State Selection approach
We have applied the momentum space version of the Density Matrix
Renormalization Group method (-DMRG) in quantum chemistry in order to study
the accuracy of the algorithm in the new context. We have shown numerically
that it is possible to determine the desired accuracy of the method in advance
of the calculations by dynamically controlling the truncation error and the
number of block states using a novel protocol which we dubbed Dynamical Block
State Selection (DBSS). The relationship between the real error and truncation
error has been studied as a function of the number of orbitals and the fraction
of filled orbitals. We have calculated the ground state of the molecules
CH, HO, and F as well as the first excited state of CH. Our
largest calculations were carried out with 57 orbitals, the largest number of
block states was 1500--2000, and the largest dimensions of the Hilbert space of
the superblock configuration was 800.000--1.200.000.Comment: 12 page
Ground-state properties of rutile: electron-correlation effects
Electron-correlation effects on cohesive energy, lattice constant and bulk
compressibility of rutile are calculated using an ab-initio scheme. A
competition between the two groups of partially covalent Ti-O bonds is the
reason that the correlation energy does not change linearly with deviations
from the equilibrium geometry, but is dominated by quadratic terms instead. As
a consequence, the Hartree-Fock lattice constants are close to the experimental
ones, while the compressibility is strongly renormalized by electronic
correlations.Comment: 1 figure to appear in Phys. Rev.
Electron correlations for ground state properties of group IV semiconductors
Valence energies for crystalline C, Si, Ge, and Sn with diamond structure
have been determined using an ab-initio approach based on information from
cluster calculations. Correlation contributions, in particular, have been
evaluated in the coupled electron pair approximation (CEPA), by means of
increments obtained for localized bond orbitals and for pairs and triples of
such bonds. Combining these results with corresponding Hartree-Fock (HF) data,
we recover about 95 % of the experimental cohesive energies. Lattice constants
are overestimated at the HF level by about 1.5 %; correlation effects reduce
these deviations to values which are within the error bounds of this method. A
similar behavior is found for the bulk modulus: the HF values which are
significantly too high are reduced by correlation effects to about 97 % of the
experimental values.Comment: 22 pages, latex, 2 figure
Proposal of an extended t-J Hamiltonian for high-Tc cuprates from ab initio calculations on embedded clusters
A series of accurate ab initio calculations on Cu_pO-q finite clusters,
properly embedded on the Madelung potential of the infinite lattice, have been
performed in order to determine the local effective interactions in the CuO_2
planes of La_{2-x}Sr_xCuO_4 compounds. The values of the first-neighbor
interactions, magnetic coupling (J_{NN}=125 meV) and hopping integral
(t_{NN}=-555 meV), have been confirmed. Important additional effects are
evidenced, concerning essentially the second-neighbor hopping integral
t_{NNN}=+110meV, the displacement of a singlet toward an adjacent colinear
hole, h_{SD}^{abc}=-80 meV, a non-negligible hole-hole repulsion
V_{NN}-V_{NNN}=0.8 eV and a strong anisotropic effect of the presence of an
adjacent hole on the values of the first-neighbor interactions. The dependence
of J_{NN} and t_{NN} on the position of neighbor hole(s) has been rationalized
from the two-band model and checked from a series of additional ab initio
calculations. An extended t-J model Hamiltonian has been proposed on the basis
of these results. It is argued that the here-proposed three-body effects may
play a role in the charge/spin separation observed in these compounds, that is,
in the formation and dynamic of stripes.Comment: 24 pages, 4 figures, submitted to Phys. Rev.
Electron attachment to valence-excited CO
The possibility of electron attachment to the valence state of CO
is examined using an {\it ab initio} bound-state multireference configuration
interaction approach. The resulting resonance has symmetry;
the higher vibrational levels of this resonance state coincide with, or are
nearly coincident with, levels of the parent state. Collisional
relaxation to the lowest vibrational levels in hot plasma situations might
yield the possibility of a long-lived CO state.Comment: Revtex file + postscript file for one figur
Cohesive properties of alkali halides
We calculate cohesive properties of LiF, NaF, KF, LiCl, NaCl, and KCl with
ab-initio quantum chemical methods. The coupled-cluster approach is used to
correct the Hartree-Fock crystal results for correlations and to systematically
improve cohesive energies, lattice constants and bulk moduli. After inclusion
of correlations, we recover 95-98 % of the total cohesive energies. The lattice
constants deviate from experiment by at most 1.1 %, bulk moduli by at most 8 %.
We also find good agreement for spectroscopic properties of the corresponding
diatomic molecules.Comment: LaTeX, 10 pages, 1 figure, accepted by Phys. Rev.
Correlation effects in MgO and CaO: Cohesive energies and lattice constants
A recently proposed computational scheme based on local increments has been
applied to the calculation of correlation contributions to the cohesive energy
of the CaO crystal. Using ab-initio quantum chemical methods for evaluating
individual increments, we obtain 80% of the difference between the experimental
and Hartree-Fock cohesive energies. Lattice constants corrected for correlation
effects deviate by less than 1% from experimental values, in the case of MgO
and CaO.Comment: LaTeX, 4 figure
- …