9,589 research outputs found

    The Euler-Heisenberg Lagrangian beyond one loop

    Full text link
    We review what is presently known about higher loop corrections to the Euler-Heisenberg Lagrangian and its Scalar QED analogue. The use of those corrections as a tool for the study of the properties of the QED perturbation series is outlined. As a further step in a long-term effort to prove or disprove the convergence of the N photon amplitudes in the quenched approximation, we present a parameter integral representation of the three-loop Euler-Heisenberg Lagrangian in 1+1 dimensional QED, obtained in the worldline formalism.Comment: 11 pages, 2 figures, talk given by Christian Schubert at QFEXT11, Benasque, Spain, Sept. 18-24, 2011, to appear in the conference proceeding

    Exact computation of one-loop correction to energy of spinning folded string in AdS_5 x S^5

    Get PDF
    We consider the 1-loop correction to the energy of folded spinning string solution in the AdS_3 part of AdS_5 x S^5. The classical string solution is expressed in terms of elliptic functions so an explicit computation of the corresponding fluctuation determinants for generic values of the spin appears to be a non-trivial problem. We show how it can be solved exactly by using the static gauge expression for the string partition function (which we demonstrate to be equivalent to the conformal gauge one) and observing that all the corresponding second order fluctuation operators can be put into the standard (single-gap) Lam\'e form. We systematically derive the small spin and large spin expansions of the resulting expression for the string energy and comment on some of their applications.Comment: 52 pp, 12 figures; v3: footnote 9 adde

    Numerical Investigation of Monopole Chains

    Full text link
    We present numerical results for chains of SU(2) BPS monopoles constructed from Nahm data. The long chain limit reveals an asymmetric behavior transverse to the periodic direction, with the asymmetry becoming more pronounced at shorter separations. This analysis is motivated by a search for semiclassical finite temperature instantons in the 3D SU(2) Georgi-Glashow model, but it appears that in the periodic limit the instanton chains either have logarithmically divergent action or wash themselves out.Comment: 14 pages, 6 figures; v2 minor changes, published versio

    A Gauge-Gravity Relation in the One-loop Effective Action

    Full text link
    We identify an unusual new gauge-gravity relation: the one-loop effective action for a massive spinor in 2n dimensional AdS space is expressed in terms of precisely the same function [a certain multiple gamma function] as the one-loop effective action for a massive charged scalar in 4n dimensions in a maximally symmetric background electromagnetic field [one for which the eigenvalues of F_{\mu\nu} are maximally degenerate, corresponding in 4 dimensions to a self-dual field, equivalently to a field of definite helicity], subject to the identification F^2 \Lambda, where \Lambda is the gravitational curvature. Since these effective actions generate the low energy limit of all one-loop multi-leg graviton or gauge amplitudes, this implies a nontrivial gauge-gravity relation at the non-perturbative level and at the amplitude level.Comment: 6 page

    Braided Oscillators

    Full text link
    The braided Hopf algebra structure of the generalized oscillator is investigated. Using the solutions two types of braided Fibonacci oscillators are introduced. This leads to two types of braided Biedenharn-Macfarlane oscillators.Comment: 12 pages, latex, some references added, published versio

    Hopf instantons, Chern-Simons vortices, and Heisenberg ferromagnets

    Full text link
    The dimensional reduction of the three-dimensional fermion-Chern-Simons model (related to Hopf maps) of Adam et el. is shown to be equivalent to (i) either the static, fixed--chirality sector of our non-relativistic spinor-Chern-Simons model in 2+1 dimensions, (ii) or a particular Heisenberg ferromagnet in the plane.Comment: 4 pages, Plain Tex, no figure

    Motivations and experiences of UK students studying abroad

    Get PDF
    This report summarises the findings of research aimed at improving understanding of the motivations behind the international diploma mobility of UK student

    Magnetic-field Induced Screening Effect and Collective Excitations

    Full text link
    We explicitly construct the fermion propagator in a magnetic field background B to take the lowest Landau-level approximation. We analyze the energy and momentum dependence in the polarization tensor and discuss the collective excitations. We find there appear two branches of collective modes in one of two transverse gauge particles; one represents a massive and attenuated gauge particle and the other behaves similar to the zero sound at finite density.Comment: 5 pages, 3 figures; references on the zero sound added and typos correcte

    B2 and G2 Toda systems on compact surfaces: a variational approach

    Full text link
    We consider the B2 and G2 Toda systems on compact surfaces. We attack the problem using variational techniques. We get existence and multiplicity of solutions under a topological assumption on the surface and some generic conditions on the parameters. We also extend some of the results to the case of general systems.Comment: 28 pages, accepted on Journal of Mathematical Physic

    On the QED Effective Action in Time Dependent Electric Backgrounds

    Get PDF
    We apply the resolvent technique to the computation of the QED effective action in time dependent electric field backgrounds. The effective action has both real and imaginary parts, and the imaginary part is related to the pair production probability in such a background. The resolvent technique has been applied previously to spatially inhomogeneous magnetic backgrounds, for which the effective action is real. We explain how dispersion relations connect these two cases, the magnetic case which is essentially perturbative in nature, and the electric case where the imaginary part is nonperturbative. Finally, we use a uniform semiclassical approximation to find an expression for very general time dependence for the background field. This expression is remarkably similar in form to Schwinger's classic result for the constant electric background.Comment: 27 pages, no figures; reference adde
    corecore