588 research outputs found

    Additional support for the TDK/MABL computer program

    Get PDF
    An advanced version of the Two-Dimensional Kinetics (TDK) computer program was developed under contract and released to the propulsion community in early 1989. Exposure of the code to this community indicated a need for improvements in certain areas. In particular, the TDK code needed to be adapted to the special requirements imposed by the Space Transportation Main Engine (STME) development program. This engine utilizes injection of the gas generator exhaust into the primary nozzle by means of a set of slots. The subsequent mixing of this secondary stream with the primary stream with finite rate chemical reaction can have a major impact on the engine performance and the thermal protection of the nozzle wall. In attempting to calculate this reacting boundary layer problem, the Mass Addition Boundary Layer (MABL) module of TDK was found to be deficient in several respects. For example, when finite rate chemistry was used to determine gas properties, (MABL-K option) the program run times became excessive because extremely small step sizes were required to maintain numerical stability. A robust solution algorithm was required so that the MABL-K option could be viable as a rocket propulsion industry design tool. Solving this problem was a primary goal of the phase 1 work effort

    Experimental archeology and serious games: challenges of inhabiting virtual heritage

    Get PDF
    Experimental archaeology has long yielded valuable insights into the tools and techniques that featured in past peoples’ relationship with the material world around them. However, experimental archaeology has, hitherto, confined itself to rigid, empirical and quantitative questions. This paper applies principles of experimental archaeology and serious gaming tools in the reconstructions of a British Iron Age Roundhouse. The paper explains a number of experiments conducted to look for quantitative differences in movement in virtual vs material environments using both “virtual” studio reconstruction as well as material reconstruction. The data from these experiments was then analysed to look for differences in movement which could be attributed to artefacts and/or environments. The paper explains the structure of the experiments, how the data was generated, what theories may make sense of the data, what conclusions have been drawn and how serious gaming tools can support the creation of new experimental heritage environments

    A Parametric Study of a Plug Nozzle, Using the Liquid Propellant Program (LPP) Code

    Get PDF
    The Liquid Propellant Program (LPP) computer code is a super-set of the industry standard Two Dimensional Kinetics (TDK) computer code. The TDK code uses a two dimensional method of characteristics solution with fully coupled finite rate kinetics for axially symmetric nozzles. The chemical reactions are modeled with a generalized reaction package that include three dimensional body efficiencies and four reaction rate forms. The code performs optional solutions for frozen or equilibrium flow. TDK evaluates discrete shocks, both attached or induced. The Transonic module models variable mixture ratio profiles from the combustion chamber injector. The Mass Addition Boundary Layer module (MABL) calculates the boundary parameters with the same chemistry options, and includes transpiration or tangential slot injection of gas at the wall. The LPP upgrades include: planar nozzle, scarfed nozzles, plug nozzles, and scramjet nozzle configurations. The code evaluates both upper and lower wall flow simulation, and includes the interaction with the external flow. The MABL module evaluates equilibrium radiation heat transfer for both upper and lower walls. In addition, LPP code models combustion effects due to injector inefficiencies with the Spray Combustion Analysis Program (SCAP) module. The LPP package provides extensive post plotting capabilities for flow visualization. The LPP is sufficiently fast and robust to provide performance predictions for extensive parametric studies and sufficiently accurate to provide flow field and performance solutions for detailed studies

    Rapid microwave-assisted synthesis of sub-30 nm lipid nanoparticles

    Get PDF
    Accessing the phase inversion temperature by microwave heating may enable the rapid synthesis of small lipid nanoparticles.Nanoparticle formulations consisted of surfactants Brij 78 and Vitamin E TPGS, and trilaurin, trimyristin, or miglyol 812 as nanoparticle lipid cores. Each formulation was placed in water and heated by microwave irradiation at temperatures ranging from 65°C to 245°C. We observed a phase inversion temperature (PIT) for these formulations based on a dramatic decrease in particle Z-average diameters. Subsequently, nanoparticles were manufactured above and below the PIT and studied for (a) stability toward dilution, (b) stability over time, (c) fabrication as a function of reaction time, and (d) transmittance of lipid nanoparticle dispersions.Lipid-based nanoparticles with distinct sizes down to 20â30nm and low polydispersity could be attained by a simple, one-pot microwave synthesis. This was carried out by accessing the phase inversion temperature using microwave heating. Nanoparticles could be synthesized in just one minute and select compositions demonstrated high stability. The notable stability of these particles may be explained by the combination of van der Waals interactions and steric repulsion. 20â30nm nanoparticles were found to be optically transparent

    Generating Better Medicines for Cancer

    Get PDF
    The complexity of tumor biology warrants tailored drug delivery for overcoming the major challenges faced by cancer therapies. The versatility of the PRINT® (Particle Replication In Non-wetting Templates) process has enabled the preparation of shape- and size-specific particles with a wide range of chemical compositions and therapeutic cargos. Different particle matrices and drugs may be combined in a plug-and-play approach, such that physico-chemical characteristics of delivery vectors may be optimized for biocompatibility, cargo stability and release, circulation half-life, and efficacy. Thus, the engineering of particles for cancer therapy with specific biophysical behaviors and cellular responses has been demonstrated via the PRINT process

    Medium-Chain Fatty Acids Rescue Motor Function and Neuromuscular Junction Degeneration in a Drosophila Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterised by progressive degeneration of the motor neurones. An expanded GGGGCC (G4C2) hexanucleotide repeat in C9orf72 is the most common genetic cause of ALS and frontotemporal dementia (FTD); therefore, the resulting disease is known as C9ALS/FTD. Here, we employ a Drosophila melanogaster model of C9ALS/FTD (C9 model) to investigate a role for specific medium-chain fatty acids (MCFAs) in reversing pathogenic outcomes. Drosophila larvae overexpressing the ALS-associated dipeptide repeats (DPRs) in the nervous system exhibit reduced motor function and neuromuscular junction (NMJ) defects. We show that two MCFAs, nonanoic acid (NA) and 4-methyloctanoic acid (4-MOA), can ameliorate impaired motor function in C9 larvae and improve NMJ degeneration, although their mechanisms of action are not identical. NA modified postsynaptic glutamate receptor density, whereas 4-MOA restored defects in the presynaptic vesicular release. We also demonstrate the effects of NA and 4-MOA on metabolism in C9 larvae and implicate various metabolic pathways as dysregulated in our ALS model. Our findings pave the way to identifying novel therapeutic targets and potential treatments for ALS

    Submacular Choroid Thickness Increases During Long-Duration Spaceflight

    Get PDF
    The Spaceflight Associated Neuro-ocular Syndrome (SANS) is characterized by the development of optic disc edema, choroidal folds, cotton-wool spots, globe flattening, and/or refractive error changes greater than or equal to 0.75D during long-duration spaceflight to the International Space Station (ISS). It is hypothesized that these findings result from the headward fluid shift that occurs due to weightlessness. We can induce a headward fluid shift on Earth using positional changes and on ISS due to weightlessness. Lower-body negative pressure (LBNP) is used to reverse the headward fluid shift by drawing fluid into the lower body and can be used on Earth and on ISS

    Statistical analysis plan for the ‘Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage’ (TICH-2) trial

    Get PDF
    Rationale Aside from blood pressure lowering, treatment options for intracerebral haemorrhage remain limited and a proportion of patients will undergo early haematoma expansion with resultant significant morbidity and mortality. Tranexamic acid (TXA), an anti-fibrinolytic drug, has been shown to significantly reduce mortality in patients, who are bleeding following trauma, when given rapidly. TICH-2 is testing whether TXA is effective at improving outcome in spontaneous intracerebral haemorrhage (SICH). Methods and design TICH-2 is a pragmatic, phase III, prospective, double-blind, randomised placebo-controlled trial. Two thousand adult (aged ≥ 18 years) patients with an acute SICH, within 8 h of stroke onset, will be randomised to receive TXA or the placebo control. The primary outcome is ordinal shift of modified Rankin Scale score at day 90. Analyses will be performed using intention-to-treat. Results This paper and its attached appendices describe the statistical analysis plan (SAP) for the trial and were developed and published prior to database lock and unblinding to treatment allocation. The SAP includes details of analyses to be undertaken and unpopulated tables which will be reported in the primary and key secondary publications. The database will be locked in early 2018, ready for publication of the results later in the same year. Discussion The SAP details the analyses that will be done to avoid bias arising from prior knowledge of the study findings. The trial will determine whether TXA can improve outcome after SICH, which currently has no definitive therapy. Trial registration ISRCTN registry, ID: ISRCTN93732214. Registered on 17 January 2013
    corecore