24,602 research outputs found
The Least Action Principle And The Spin Of Galaxies In The Local Group
Using Peebles' least action principle, we determine trajectories for the
galaxies in the Local Group and the more massive galaxies in the Local
Neighbourhood. We deduce the resulting angular momentum for the whole of the
Local Group and study the tidal force acting on the Local Group and its
galaxies. Although Andromeda and the Milky Way dominate the tidal force acting
on each other during the present epoch, we show that there is a transition time
at before which the tidal force is dominated by galaxies outside
the Local Group in each case. This shows that the Local Group can not be
considered as an isolated system as far as the tidal forces are concerned. We
integrate the tidal torques acting on the Milky Way and Andromeda and derive
their spin angular momenta, obtaining results which are comparable with
observation.Comment: 16 pages (5 figures available on request), plain TeX, IoA-93-01-AM
Narrative Quilts and Quilted Narratives: The Art of Faith Ringgold and Alice Walker
There have been two main streams of influence on Chicano artists aside from the obvious one that is the result of their artistic training, education and development in the United States. The primary influence came from Mexico, first during the colonial period in the form of New Spanish art and architecture, and then in modem times provided by the Mexican muralists through their work and their use of pre-Columbian art. The New Spanish materials formed the nucleus for the second stream of influence composed of the various manifestations of religious folk art found primarily in the Southwest
Continuous measurement of shock velocity using a microwave technique
Microwave technique for continuous measurement of shock wave velocit
Performance evaluation of a kinesthetic-tactual display
Simulator studies demonstrated the feasibility of using kinesthetic-tactual (KT) displays for providing collective and cyclic command information, and suggested that KT displays may increase pilot workload capability. A dual-axis laboratory tracking task suggested that beyond reduction in visual scanning, there may be additional sensory or cognitive benefits to the use of multiple sensory modalities. Single-axis laboratory tracking tasks revealed performance with a quickened KT display to be equivalent to performance with a quickened visual display for a low frequency sum-of-sinewaves input. In contrast, an unquickened KT display was inferior to an unquickened visual display. Full scale simulator studies and/or inflight testing are recommended to determine the generality of these results
Clustering as an example of optimizing arbitrarily chosen objective functions
This paper is a reflection upon a common practice of solving various types of learning problems by optimizing arbitrarily chosen criteria in the hope that they are well correlated with the criterion actually used for assessment of the results. This issue has been investigated using clustering as an example, hence a unified view of clustering as an optimization problem is first proposed, stemming from the belief that typical design choices in clustering, like the number of clusters or similarity measure can be, and often are suboptimal, also from the point of view of clustering quality measures later used for algorithm comparison and ranking. In order to illustrate our point we propose a generalized clustering framework and provide a proof-of-concept using standard benchmark datasets and two popular clustering methods for comparison
On the Use of Group Theoretical and Graphical Techniques toward the Solution of the General N-body Problem
Group theoretic and graphical techniques are used to derive the N-body wave
function for a system of identical bosons with general interactions through
first-order in a perturbation approach. This method is based on the maximal
symmetry present at lowest order in a perturbation series in inverse spatial
dimensions. The symmetric structure at lowest order has a point group
isomorphic with the S_N group, the symmetric group of N particles, and the
resulting perturbation expansion of the Hamiltonian is order-by-order invariant
under the permutations of the S_N group. This invariance under S_N imposes
severe symmetry requirements on the tensor blocks needed at each order in the
perturbation series. We show here that these blocks can be decomposed into a
basis of binary tensors invariant under S_N. This basis is small (25 terms at
first order in the wave function), independent of N, and is derived using
graphical techniques. This checks the N^6 scaling of these terms at first order
by effectively separating the N scaling problem away from the rest of the
physics. The transformation of each binary tensor to the final normal
coordinate basis requires the derivation of Clebsch-Gordon coefficients of S_N
for arbitrary N. This has been accomplished using the group theory of the
symmetric group. This achievement results in an analytic solution for the wave
function, exact through first order, that scales as N^0, effectively
circumventing intensive numerical work. This solution can be systematically
improved with further analytic work by going to yet higher orders in the
perturbation series.Comment: This paper was submitted to the Journal of Mathematical physics, and
is under revie
Evaluating the Applicability of the Fokker-Planck Equation in Polymer Translocation: A Brownian Dynamics Study
Brownian dynamics (BD) simulations are used to study the translocation
dynamics of a coarse-grained polymer through a cylindrical nanopore. We
consider the case of short polymers, with a polymer length, N, in the range
N=21-61. The rate of translocation is controlled by a tunable friction
coefficient, gamma_{0p}, for monomers inside the nanopore. In the case of
unforced translocation, the mean translocation time scales with polymer length
N as ~ (N-N_p)^alpha, where N_p is the average number of monomers in the
nanopore. The exponent approaches the value alpha=2 when the pore friction is
sufficiently high, in accord with the prediction for the case of the
quasi-static regime where pore friction dominates. In the case of forced
translocation, the polymer chain is stretched and compressed on the cis and
trans sides, respectively, for low gamma_{0p}. However, the chain approaches
conformational quasi-equilibrium for sufficiently large gamma_{0p}. In this
limit the observed scaling of with driving force and chain length
supports the FP prediction that is proportional to N/f_d for sufficiently
strong driving force. Monte Carlo simulations are used to calculate
translocation free energy functions for the system. The free energies are used
with the Fokker-Planck equation to calculate translocation time distributions.
At sufficiently high gamma_{0p}, the predicted distributions are in excellent
agreement with those calculated from the BD simulations. Thus, the FP equation
provides a valid description of translocation dynamics for sufficiently high
pore friction for the range of polymer lengths considered here. Increasing N
will require a corresponding increase in pore friction to maintain the validity
of the FP approach. Outside the regime of low N and high pore friction, the
polymer is out of equilibrium, and the FP approach is not valid.Comment: 13 pages, 11 figure
Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br
Using tunable vacuum-UV radiation from a synchrotron, negative ions are detected by quadrupolar mass spectrometry following photoexcitation of three gaseous halogenated methanes CHX (X = F,Cl,Br). The anions X, H, CX, CHX and CHX are observed, and their ion yields recorded in the range 8-35 eV. The anions show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation, generically described as AB + h A + B (+ neutrals). Absolute cross sections for ion-pair formation are obtained by calibrating the signal intensities with those of F from both SF and CF. The cross sections for formation of X + CH are much greater than for formation of CHX + H. In common with many quadrupoles, the spectra of / 1 (H) anions show contributions from all anions, and only for CHBr is it possible to perform the necessary subtraction to obtain the true H spectrum. The anion cross sections are normalised to vacuum-UV absorption cross sections to obtain quantum yields for their production. The appearance energies of X and CHX are used to calculate upper limits to 298 K bond dissociation energies for D (HC-X) and D (XHC-H) which are consistent with literature values. The spectra suggest that most of the anions are formed indirectly by crossing of Rydberg states of the parent molecule onto an ion-pair continuum. The one exception is the lowest-energy peak of F from CHF at 13.4 eV, where its width and lack of structure suggest it may correspond to a direct ion-pair transition
- …