2,341 research outputs found

    Factors in International Space Station Integration Feasibility Assessments

    Get PDF
    The International Space Station, ISS, is a growing vehicle. The ISS configuration changes internally and externally with each ISS flight. Each flight adds resources and capabilities such as docking/berthing ports, power, stowage volume, heat rejection, and data processing capability. The configuration, capabilities and performance characteristics of the vehicle will be in flux until assembly complete. At the same time the knowledge about what is required to support humans involved in long duration space flight is also being greatly expanded. In addition to the changes occurring on-orbit, the situation on the ground is also very dynamic. Proposals for new ISS elements, proposed deletions of elements, changes to the ISS requirements, and changes to the planned configuration are always under evaluation. Furthermore, budgetary issues have driven the need to explore alternative options for the ISS . This environment has made the role of the technical integrator in the ISS program unique in that the baseline against which proposals are evaluated is always changing. The nature of the International Space Station Program adds another dimension to the integrators task. ISS program activities are spread across several centers: KSC, MSFC, GRC, DFRC, ARC and JSc. There are six International Partners/participants each with their own unique organizations. The prime contractor is in Texas, California and Alabama. And, the Space Shuttle Program as the launch vehicle provider is another major interface. In spite of the fluidity of the technical baseline, projections and organizational complexity, in the course of evaluating proposals and producing feasibility assessments there are factors, which frequently emerge as significant. These factors tend to be the limiting conditions when they come into play. The finite resources, which tend to limit the options for ISS are: upmass, life support and crew rescue capability, crew time, utilities, exercise equipment, and docking/berthing ports. Upmass requirements need to be developed for each option proposed. Short term and long term impacts to upmass are the result of the implementation and long term operations. The upmass requirements need to be met by the existing launch vehicles and any change in flight rate will be a significant cost driver. In addition, when any item is brought to the ISS careful consideration must be given to the on-board stowage and crew time available to unpack, transfer, stow and use these items. If stowage is not available then something must be returned, use of non-standard stowage negotiated or the item in question stays on the ground. Additional crew time requirements will impact available utilization time or crew off-duty time. When the human element is affected, such as, by increasing the number of crew members or changing the duration of the crew stay (longer or shorter) there is an additional set of factors that come into play. The main considerations are: rescue capability, exercise requirements and availability of equipment, resupply, and life support capability

    Label-free enrichment of adrenal cortical progenitor cells using inertial microfluidics.

    Get PDF
    Passive and label-free isolation of viable target cells based on intrinsic biophysical cellular properties would allow for cost savings in applications where molecular biomarkers are known as well as potentially enable the separation of cells with little-to-no known molecular biomarkers. We have demonstrated the purification of adrenal cortical progenitor cells from digestions of murine adrenal glands utilizing hydrodynamic inertial lift forces that single cells and multicellular clusters differentially experience as they flow through a microchannel. Fluorescence staining, along with gene expression measurements, confirmed that populations of cells collected in different outlets were distinct from one another. Furthermore, primary murine cells processed through the device remained highly viable and could be cultured for 10 days in vitro. The proposed target cell isolation technique can provide a practical means to collect significant quantities of viable intact cells required to translate stem cell biology to regenerative medicine in a simple label-free manner

    The Role of Local Policies on Resource Utilization: Timber Harvesting in St. Tammany Parish, Louisiana

    Get PDF
    Seemingly unrelated regression was used to investigate if the passage of forestry-related ordinances has had an effect upon timber harvesting activities in St. Tammany Parish, Louisiana. Results indicate that a significant negative relationship exists between a $10,000 road bond ordinance and the level of timber harvest in the Parish.Resource /Energy Economics and Policy,

    Parallel fabrication and single-electron charging of devices based on ordered, two-dimensional phases of organically functionalized metal nanocrystals

    Get PDF
    A parallel technique for fabricating single-electron, solid-state capacitance devices from ordered, two-dimensional closest-packed phases of organically functionalized metal nanocrystals is presented. The nanocrystal phases were prepared as Langmuir monolayers and subsequently transferred onto Al-electrode patterned glass substrates for device construction. Alternating current impedance measurements were carried out to probe the single-electron charging characteristics of the devices under both ambient and 77 K conditions. Evidence of a Coulomb blockade and step structure reminiscent of a Coulomb staircase is presented

    Evaluating the Applicability of the Fokker-Planck Equation in Polymer Translocation: A Brownian Dynamics Study

    Full text link
    Brownian dynamics (BD) simulations are used to study the translocation dynamics of a coarse-grained polymer through a cylindrical nanopore. We consider the case of short polymers, with a polymer length, N, in the range N=21-61. The rate of translocation is controlled by a tunable friction coefficient, gamma_{0p}, for monomers inside the nanopore. In the case of unforced translocation, the mean translocation time scales with polymer length N as ~ (N-N_p)^alpha, where N_p is the average number of monomers in the nanopore. The exponent approaches the value alpha=2 when the pore friction is sufficiently high, in accord with the prediction for the case of the quasi-static regime where pore friction dominates. In the case of forced translocation, the polymer chain is stretched and compressed on the cis and trans sides, respectively, for low gamma_{0p}. However, the chain approaches conformational quasi-equilibrium for sufficiently large gamma_{0p}. In this limit the observed scaling of with driving force and chain length supports the FP prediction that is proportional to N/f_d for sufficiently strong driving force. Monte Carlo simulations are used to calculate translocation free energy functions for the system. The free energies are used with the Fokker-Planck equation to calculate translocation time distributions. At sufficiently high gamma_{0p}, the predicted distributions are in excellent agreement with those calculated from the BD simulations. Thus, the FP equation provides a valid description of translocation dynamics for sufficiently high pore friction for the range of polymer lengths considered here. Increasing N will require a corresponding increase in pore friction to maintain the validity of the FP approach. Outside the regime of low N and high pore friction, the polymer is out of equilibrium, and the FP approach is not valid.Comment: 13 pages, 11 figure

    Thermal profiles within the channel of planar gunn diodes using micro-particle sensors

    Get PDF
    The paper describes the use of a novel microparticle sensor (~3 μm diameter) and infra-red (IR) microscopy to measure the temperature profile within the active channel (typically 3 μm length and 120 μm width) of planar Gunn diodes. The method has enabled detailed temperature measurements showing an asymmetrical temperature profile along the active width of these devices. The asymmetrical temperature profile suggests a similar behaviour in the channel current density, which may contribute to the lower than expected RF output power

    An inventory of Cicadellidae, Aphrophoridae, and Delphacidae (Hemiptera) in the Alvar Grasslands of the Maxton Plains, Michigan

    Get PDF
    Alvars are rare grassland communities found in the North American Great Lakes Region consisting of thin mineral soil over limestone bedrock and act as refugia for many unique and threatened endemic species. Few studies have catalogued Hemiptera species present in the alvars of the Maxton Plains on Drummond Island, MI. We aimed to add to these species lists, compare species diversity between alvar sites with varying levels of exposed bedrock, and test if an unpaved limestone road running through our sample sites influenced Hemipteran populations. We collected several prairie endemic species of Cicadellidae (Hemiptera), including a new record for the island, Laevicephalus unicoloratus. We found that pavement alvars, those with large portions of exposed bedrock, had higher species diversity on both of our collection dates despite having less overall vegetation when compared to grassland alvars with continuous soil coverage (H’ – Date 1: pavement = 0.649, grassland = 0.471; H’ – Date 2: pavement = 0.982, grassland = 0.855). We observed that distance relative to the unpaved limestone road affected the population densities of our target Hemiptera groups (Cicadellidae, Aphrophoridae, and Delphacidae), likely due to dust arising from dry conditions and road use. Our results, and the results of others, indicate the biological uniqueness of the alvars. Alvars face threats from off-road vehicle use, individual disregard for their conservation, and a changing climate. The continued monitoring, maintenance and protection of remaining alvars is imperative if their existence is to be continued beyond our lifetime

    An inventory of Cicadellidae, Aphrophoridae, and Delphacidae (Hemiptera) in the Alvar Grasslands of the Maxton Plains, Michigan

    Get PDF
    Alvars are rare grassland communities found in the North American Great Lakes Region consisting of thin mineral soil over limestone bedrock and act as refugia for many unique and threatened endemic species. Few studies have catalogued Hemiptera species present in the alvars of the Maxton Plains on Drummond Island, MI. We aimed to add to these species lists, compare species diversity between alvar sites with varying levels of exposed bedrock, and test if an unpaved limestone road running through our sample sites influenced Hemipteran populations. We collected several prairie endemic species of Cicadellidae (Hemiptera), including a new record for the island, Laevicephalus unicoloratus. We found that pavement alvars, those with large portions of exposed bedrock, had higher species diversity on both of our collection dates despite having less overall vegetation when compared to grassland alvars with continuous soil coverage (H’ – Date 1: pavement = 0.649, grassland = 0.471; H’ – Date 2: pavement = 0.982, grassland = 0.855). We observed that distance relative to the unpaved limestone road affected the population densities of our target Hemiptera groups (Cicadellidae, Aphrophoridae, and Delphacidae), likely due to dust arising from dry conditions and road use. Our results, and the results of others, indicate the biological uniqueness of the alvars. Alvars face threats from off-road vehicle use, individual disregard for their conservation, and a changing climate. The continued monitoring, maintenance and protection of remaining alvars is imperative if their existence is to be continued beyond our lifetime
    • …
    corecore