4,372 research outputs found

    Review of SIS Experimental Results on Strangeness

    Full text link
    >A review of meson emission in heavy ion collisions at incident energies around 1 -- 2 A⋅A\cdotGeV is presented. It is shown how the shape of the spectra and the various particle yields vary with system size, with centrality and with incident energy. A statistical model assuming thermal and chemical equilibrium and exact strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features. Emphasis is put onto the study of K+K^+ and K−K^- emission. In the framework of this statistical model it is shown that the experimentally observed equality of K+K^+ and K−K^- rates at threshold corrected energies s−sth\sqrt{s} - \sqrt{s_{th}} is due to a crossing of two excitation functions. Furthermore, the independence of the K+K^+ to K−K^- ratio on the number of participating nucleons observed between 1 and 10 A⋅A\cdotGeV is consistent with this model. The observed flow effects are beyond the scope of this model.Comment: 10 pages, 9 figures, Strangeness 2000, V International Conference on Strangeness in Quark Matter, July, 2000, Berkeley, Californi

    The Global Star Formation Rate from the 1.4 GHz Luminosity Function

    Get PDF
    The decimetric luminosity of many galaxies appears to be dominated by synchrotron emission excited by supernova explosions. Simple models suggest that the luminosity is directly proportional to the rate of supernova explosions of massive stars averaged over the past 30 Myr. The proportionality may be used together with models of the evolving 1.4 GHz luminosity function to estimate the global star formation rate density in the era z < 1. The local value is estimated to be 0.026 solar masses per year per cubic megaparsec, some 50% larger than the value inferred from the Halpha luminosity density. The value at z ~ 1 is found to be 0.30 solar masses per year per cubic megaparsec. The 10-fold increase in star formation rate density is consistent with the increase inferred from mm-wave, far-infrared, ultra-violet and Halpha observations.Comment: 10 pages, 2 figures, Astrophysical Journal Letters (in press); new PS version has improved figure placemen

    An evaluation of the impact of a multidisciplinary team, in a single centre, on treatment and survival in patients with inoperable non-small-cell lung cancer

    Get PDF
    Treatment and survival of patients with inoperable Non-small-cell lung cancer in 1997 (n=117) and 2001 (n=126), before and after the introduction of a multidisciplinary team, was examined in a single centre. There were no differences in age, sex and extent of deprivation between the two years. However, in 2001, 23% of patients received chemotherapy treatment compared with 7% in 1997 (P<0.001). Median survival in 2001 was 6.6 months compared with 3.2 months in 1997 (P<0.001)

    Strong Lensing Probabilities in a Cosmological Model with a Running Primordial Power Spectrum

    Full text link
    The combination of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data with other finer scale cosmic microwave background (CMB) experiments (CBI and ACBAR) and two structure formation measurements (2dFGRS and Lyman α\alpha forest) suggest a Λ\LambdaCDM cosmological model with a running spectral power index of primordial density fluctuations. Motivated by this new result on the index of primordial power spectrum, we present the first study on the predicted lensing probabilities of image separation in a spatially flat Λ\LambdaCDM model with a running spectral index (RSI-Λ\LambdaCDM model). It is shown that the RSI-Λ\LambdaCDM model suppress the predicted lensing probabilities on small splitting angles of less than about 4′′^{''} compared with that of standard power-law Λ\LambdaCDM (PL-Λ\LambdaCDM) model.Comment: 11 pages including 1 figures. Accepted for publication in Modern Physics Letters A (MPLA), minor revision

    Spectacular Shells in the Host Galaxy of the QSO MC2 1635+119

    Get PDF
    We present deep HST/ACS images and Keck spectroscopy of MC2 1635+119, a QSO hosted by a galaxy previously classified as an undisturbed elliptical. Our new images reveal dramatic shell structure indicative of a merger event in the relatively recent past. The brightest shells in the central regions of the host are distributed alternately in radius, with at least two distinct shells on one side of the nucleus and three on the other, out to a distance of ~13 kpc. The light within the five shells comprises ~6% of the total galaxy light. Lower surface brightness ripples or tails and other debris extend out to a distance of ~65 kpc. A simple N-body model for a merger reproduces the inner shell structure and gives an estimate for the age of the merger between ~30 Myr and ~1.7 Gyr, depending on a range of reasonable assumptions. While the inner shell structure is suggestive of a minor merger, the total light contribution from the shells and extended structures are more indicative of a major merger. The spectrum of the host galaxy is dominated by a population of intermediate age (~1.4 Gyr), indicating a strong starburst episode that may have occurred at the time of the merger event. We speculate that the current QSO activity may have been triggered in the recent past by either a minor merger, or by debris from an older (~Gyr) major merger that is currently ``raining'' back into the central regions of the merger remnant.Comment: 14 pages, 5 figures. Accepted for publication in the Astrophysical Journa

    Dynamical tunnelling with ultracold atoms in magnetic microtraps

    Get PDF
    The study of dynamical tunnelling in a periodically driven anharmonic potential probes the quantum-classical transition via the experimental control of the effective Planck's constant for the system. In this paper we consider the prospects for observing dynamical tunnelling with ultracold atoms in magnetic microtraps on atom chips. We outline the driven anharmonic potentials that are possible using standard magnetic traps, and find the Floquet spectrum for one of these as a function of the potential strength, modulation, and effective Planck's constant. We develop an integrable approximation to the non-integrable Hamiltonian and find that it can explain the behaviour of the tunnelling rate as a function of the effective Planck's constant in the regular region of parameter space. In the chaotic region we compare our results with the predictions of models that describe chaos-assisted tunnelling. Finally we examine the practicality of performing these experiments in the laboratory with Bose-Einstein condensates.Comment: V1: 12 pages, 10 figures. V2: 14 pages, 12 figures, significantly updated in response to referee report. Some figures are lower quality to reduce file sizes, please contact submitter for high quality versions. V3: Introduction rewritten, but mostly unchanged; updated to published versio

    Breaking the Redshift Deadlock - I: Constraining the star formation history of galaxies with sub-millimetre photometric redshifts

    Full text link
    Future extragalactic sub-millimetre and millimetre surveys have the potential to provide a sensitive census of the level of obscured star formation in galaxies at all redshifts. While in general there is good agreement between the source counts from existing SCUBA (850um) and MAMBO (1.25mm) surveys of different depths and areas, it remains difficult to determine the redshift distribution and bolometric luminosities of the sub-millimetre and millimetre galaxy population. This is principally due to the ambiguity in identifying an individual sub-millimetre source with its optical, IR or radio counterpart which, in turn, prevents a confident measurement of the spectroscopic redshift. Additionally, the lack of data measuring the rest-frame FIR spectral peak of the sub-millimetre galaxies gives rise to poor constraints on their rest-frame FIR luminosities and star formation rates. In this paper we describe Monte-Carlo simulations of ground-based, balloon-borne and satellite sub-millimetre surveys that demonstrate how the rest-frame FIR-sub-millimetre spectral energy distributions (250-850um) can be used to derive photometric redshifts with an r.m.s accuracy of +/- 0.4 over the range 0 < z < 6. This opportunity to break the redshift deadlock will provide an estimate of the global star formation history for luminous optically-obscured galaxies [L(FIR) > 3 x 10^12 Lsun] with an accuracy of 20 per cent.Comment: 14 pages, 22 figures, submitted to MNRAS, replaced with accepted versio
    • …
    corecore