6 research outputs found

    Congestion control in wireless sensor and 6LoWPAN networks: toward the Internet of Things

    Get PDF
    The Internet of Things (IoT) is the next big challenge for the research community where the IPv6 over low power wireless personal area network (6LoWPAN) protocol stack is a key part of the IoT. Recently, the IETF ROLL and 6LoWPAN working groups have developed new IP based protocols for 6LoWPAN networks to alleviate the challenges of connecting low memory, limited processing capability, and constrained power supply sensor nodes to the Internet. In 6LoWPAN networks, heavy network traffic causes congestion which significantly degrades network performance and impacts on quality of service aspects such as throughput, latency, energy consumption, reliability, and packet delivery. In this paper, we overview the protocol stack of 6LoWPAN networks and summarize a set of its protocols and standards. Also, we review and compare a number of popular congestion control mechanisms in wireless sensor networks (WSNs) and classify them into traffic control, resource control, and hybrid algorithms based on the congestion control strategy used. We present a comparative review of all existing congestion control approaches in 6LoWPAN networks. This paper highlights and discusses the differences between congestion control mechanisms for WSNs and 6LoWPAN networks as well as explaining the suitability and validity of WSN congestion control schemes for 6LoWPAN networks. Finally, this paper gives some potential directions for designing a novel congestion control protocol, which supports the IoT application requirements, in future work

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Ocular injuries from paintball pellets

    No full text
    Objective: To evaluate the ocular effects of blunt trauma due to injury from a paintball pellet. Design: Noncomparative case series. Participants: Thirteen patients who suffered ocular injury from paintballs are described. The patients presented to six different civilian and military emergency departments in tertiary care medical centers. Intervention: Patients were treated for the ocular injury. Main Outcome Measures: Patients were evaluated for initial and final visual acuity. The reason for persistent loss of vision was delineated. Results: There were 12 males and I female with an average age of 21 years (range, 12-33 years). Eleven of the 13 had no ocular protection at the time of the ocular injury. On initial examination, nine patients had a hyphema, nine had a vitreous hemorrhage, six had a retinal tear or detachment, three had corneal or corneal-scleral ruptures, and one had traumatic optic neuropathy. The final visual acuity was 20/40 or better in two patients, 20/50 to 20/150 in three patients, and 20/200 or worse in eight patients. Conclusion: Injuries due to paintball pellets can result in severe ocular damage and significant loss of vision. Eyecare professionals should be aware of the risks of this sport and must strongly advise participants to wear adequate protection when involved in this activity

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit
    corecore