4,465 research outputs found

    Kibble-Zurek mechanism in curved elastic surface crystals

    Full text link
    Topological defects shape the material and transport properties of physical systems. Examples range from vortex lines in quantum superfluids, defect-mediated buckling of graphene, and grain boundaries in ferromagnets and colloidal crystals, to domain structures formed in the early universe. The Kibble-Zurek (KZ) mechanism describes the topological defect formation in continuous non-equilibrium phase transitions with a constant finite quench rate. Universal KZ scaling laws have been verified experimentally and numerically for second-order transitions in planar Euclidean geometries, but their validity for discontinuous first-order transitions in curved and topologically nontrivial systems still poses an open question. Here, we use recent experimentally confirmed theory to investigate topological defect formation in curved elastic surface crystals formed by stress-quenching a bilayer material. Studying both spherical and toroidal crystals, we find that the defect densities follow KZ-type power laws independent of surface geometry and topology. Moreover, the nucleation sequences agree with recent experimental observations for spherical colloidal crystals. These results suggest that KZ scaling laws hold for a much broader class of dynamical phase transitions than previously thought, including non-thermal first-order transitions in non-planar geometries.Comment: 8 pages, 3 figures; introduction and typos correcte

    On the relationship between MOND and DM

    Full text link
    Numerous astrophysical observations have shown that classical Newtonian dynamics fails on galactic scales and beyond, if only visible matter is taken into account. The two most popular theoretical concepts dealing with this problem are Dark Matter (DM) and Modified Newtonian Dynamics (MOND). In the first part of this paper it is demonstrated that a generalized MOND equation can be derived in the framework of Newtonian Dark Matter theory. For systems satisfying a fixed relationship between the gravitational fields caused by DM and visible matter, this generalized MOND equation reduces to the traditional MOND law, first postulated by Milgrom. Therefore, we come to the conclusion that traditional MOND can also be interpreted as special limit case of DM theory. In the second part, a formal derivation of the Tully-Fisher relation is discussed.Comment: 5 pages, accepted for publication in Astrophys. J. Letter

    Antipolar ordering of topological defects in active liquid crystals

    Get PDF
    ATP-driven microtubule-kinesin bundles can self-assemble into two-dimensional active liquid crystals (ALCs) that exhibit a rich creation and annihilation dynamics of topological defects, reminiscent of particle-pair production processes in quantum systems. This recent discovery has sparked considerable interest but a quantitative theoretical description is still lacking. We present and validate a minimal continuum theory for this new class of active matter systems by generalizing the classical Landau-de Gennes free-energy to account for the experimentally observed spontaneous buckling of motor-driven extensile microtubule bundles. The resulting model agrees with recently published data and predicts a regime of antipolar order. Our analysis implies that ALCs are governed by the same generic ordering principles that determine the non-equilibrium dynamics of dense bacterial suspensions and elastic bilayer materials. Moreover, the theory manifests an energetic analogy with strongly interacting quantum gases. Generally, our results suggest that complex non-equilibrium pattern-formation phenomena might be predictable from a few fundamental symmetry-breaking and scale-selection principles.Comment: final accepted journal version; SI text and movies available at article on iop.or

    Optimal noise-canceling networks

    Full text link
    Natural and artificial networks, from the cerebral cortex to large-scale power grids, face the challenge of converting noisy inputs into robust signals. The input fluctuations often exhibit complex yet statistically reproducible correlations that reflect underlying internal or environmental processes such as synaptic noise or atmospheric turbulence. This raises the practically and biophysically relevant of question whether and how noise-filtering can be hard-wired directly into a network's architecture. By considering generic phase oscillator arrays under cost constraints, we explore here analytically and numerically the design, efficiency and topology of noise-canceling networks. Specifically, we find that when the input fluctuations become more correlated in space or time, optimal network architectures become sparser and more hierarchically organized, resembling the vasculature in plants or animals. More broadly, our results provide concrete guiding principles for designing more robust and efficient power grids and sensor networks.Comment: 6 pages, 3 figures, supplementary materia

    Thermodynamic laws in isolated systems

    Get PDF
    The recent experimental realization of exotic matter states in isolated quantum systems and the ensuing controversy about the existence of negative absolute temperatures demand a careful analysis of the conceptual foundations underlying microcanonical thermostatistics. Here, we provide a detailed comparison of the most commonly considered microcanonical entropy definitions, focussing specifically on whether they satisfy or violate the zeroth, first and second law of thermodynamics. Our analysis shows that, for a broad class of systems that includes all standard classical Hamiltonian systems, only the Gibbs volume entropy fulfills all three laws simultaneously. To avoid ambiguities, the discussion is restricted to exact results and analytically tractable examples.Comment: footnotes 19, 26 and outlook section adde

    Geometric control of bacterial surface accumulation

    Full text link
    Controlling and suppressing bacterial accumulation at solid surfaces is essential for preventing biofilm formation and biofouling. Whereas various chemical surface treatments are known to reduce cell accumulation and attachment, the role of complex surface geometries remains less well understood. Here, we report experiments and simulations that explore the effects of locally varying boundary curvature on the scattering and accumulation dynamics of swimming Escherichia coli bacteria in quasi-two-dimensional microfluidic channels. Our experimental and numerical results show that a concave periodic boundary geometry can decrease the average cell concentration at the boundary by more than 50% relative to a flat surface.Comment: 10 pages, 5 figure
    • …
    corecore