24 research outputs found

    The influence of maternal Nippostrongylus brasiliensis infection on immunity in offspring

    Get PDF
    Includes abstract.Includes bibliographical references.This study investigates imprinting of the murine fetal immune system by maternal infection with the helminth Nippostrongylus brasiliensis (Nb) prior to pregnancy and its effect on control of the Salmonella enterica serovar typhimurium (STm) in offspring. We show that maternal Nb infection in BALB/c mice results in the transfer of Nb antigen (NES)-specific IgG1 in utero and through breastmilk, changes in lymphocyte populations and early germinal center formation in naive offspring. Maternal Nb infection does not interfere with control of STm in offspring in BALB/c mice, but may interfere with control of STm in C57BL/6 mice

    High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease

    Get PDF
    Individual reports suggest that the central nervous system (CNS) contains multiple immune cell types with diverse roles in tissue homeostasis, immune defense, and neurological diseases. It has been challenging to map leukocytes across the entire brain, and in particular in pathology, where phenotypic changes and influx of blood-derived cells prevent a clear distinction between reactive leukocyte populations. Here, we applied high-dimensional single-cell mass and fluorescence cytometry, in parallel with genetic fate mapping systems, to identify, locate, and characterize multiple distinct immune populations within the mammalian CNS. Using this approach, we revealed that microglia, several subsets of border-associated macrophages and dendritic cells coexist in the CNS at steady state and exhibit disease-specific transformations in the immune microenvironment during aging and in models of Alzheimer's disease and multiple sclerosis. Together, these data and the described framework provide a resource for the study of disease mechanisms, potential biomarkers, and therapeutic targets in CNS disease

    Natural and Vaccine-Mediated Immunity to Salmonella Typhimurium is Impaired by the Helminth Nippostrongylus brasiliensis

    Get PDF
    The impact of exposure to multiple pathogens concurrently or consecutively on immune function is unclear. Here, immune responses induced by combinations of the bacterium Salmonella Typhimurium (STm) and the helminth Nippostrongylus brasiliensis (Nb), which causes a murine hookworm infection and an experimental porin protein vaccine against STm, were examined. Mice infected with both STm and Nb induced similar numbers of Th1 and Th2 lymphocytes compared with singly infected mice, as determined by flow cytometry, although lower levels of secreted Th2, but not Th1 cytokines were detected by ELISA after re-stimulation of splenocytes. Furthermore, the density of FoxP3+ T cells in the T zone of co-infected mice was lower compared to mice that only received Nb, but was greater than those that received STm. This reflected the intermediate levels of IL-10 detected from splenocytes. Co-infection compromised clearance of both pathogens, with worms still detectable in mice weeks after they were cleared in the control group. Despite altered control of bacterial and helminth colonization in co-infected mice, robust extrafollicular Th1 and Th2-reflecting immunoglobulin-switching profiles were detected, with IgG2a, IgG1 and IgE plasma cells all detected in parallel. Whilst extrafollicular antibody responses were maintained in the first weeks after co-infection, the GC response was less than that in mice infected with Nb only. Nb infection resulted in some abrogation of the longer-term development of anti-STm IgG responses. This suggested that prior Nb infection may modulate the induction of protective antibody responses to vaccination. To assess this we immunized mice with porins, which confer protection in an antibody-dependent manner, before challenging with STm. Mice that had resolved a Nb infection prior to immunization induced less anti-porin IgG and had compromised protection against infection. These findings demonstrate that co-infection can radically alter the development of protective immunity during natural infection and in response to immunization

    High Dimensional Cytometry of Central Nervous System Leukocytes During Neuroinflammation

    Full text link
    Autoimmune diseases like multiple sclerosis (MS) develop from the activation and complex interactions of a wide network of immune cells, which penetrate the central nervous system (CNS) and cause tissue damage and neurological deficits. Experimental autoimmune encephalomyelitis (EAE) is a model used to study various aspects of MS, including the infiltration of autoaggressive T cells and pathogenic, inflammatory myeloid cells into the CNS. Various signature landscapes of immune cell infiltrates have proven useful in shedding light on the causes of specific EAE symptoms in transgenic mice. However, single cell analysis of these infiltrates has thus far been limited in conventional fluorescent flow cytometry methods by 14-16 parameter staining panels. With the advent of mass cytometry and metal-tagged antibodies, a staining panel of 35-45 parameters is now possible. With the aid of dimensionality reducing and clustering algorithms to visualize and analyze this high dimensional data, this allows for a more comprehensive picture of the different cell populations in an inflamed CNS, at a single cell resolution level. Here, we describe the induction of active EAE in C56BL/6 mice and, in particular, the staining of microglia and CNS invading immune cells for mass cytometry with subsequent data visualization and analysis

    Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation

    Full text link
    The central nervous system (CNS) is under close surveillance by immune cells, which mediate tissue homeostasis, protection, and repair. Conversely, in neuroinflammation, dysregulated leukocyte invasion into the CNS leads to immunopathology and neurological disability. To invade the brain parenchyma, autoimmune encephalitogenic T helper (T) cells must encounter their cognate antigens (Ags) presented via local Ag-presenting cells (APCs). The precise identity of the APC that samples, processes, and presents CNS-derived Ags to autoaggressive T cells is unknown. Here, we used a combination of high-dimensional single-cell mapping and conditional MHC class II ablation across all CNS APCs to systematically interrogate each population for its ability to reactivate encephalitogenic T cells in vivo. We found a population of conventional dendritic cells, but not border-associated macrophages or microglia, to be essential for licensing T cells to initiate neuroinflammation

    Protein Tyrosine Phosphatase Non-Receptor Type 2 Function in Dendritic Cells Is Crucial to Maintain Tissue Tolerance

    Get PDF
    Protein tyrosine phosphatase non-receptor type 2 (PTPN2) plays a pivotal role in immune homeostasis and has been associated with human autoimmune and chronic inflammatory diseases. Though PTPN2 is well-characterized in lymphocytes, little is known about its function in innate immune cells. Our findings demonstrate that dendritic cell (DC)-intrinsic PTPN2 might be the key to explain the central role for PTPN2 in the immune system to maintain immune tolerance. Partial genetic PTPN2 ablation in DCs resulted in spontaneous inflammation, particularly in skin, liver, lung and kidney 22 weeks post-birth. DC-specific PTPN2 controls steady-state immune cell composition and even incomplete PTPN2 deficiency in DCs resulted in enhanced organ infiltration of conventional type 2 DCs, accompanied by expansion of IFNγ-producing effector T-cells. Consequently, the phenotypic effects of DC-specific PTPN2 deficiency were abolished in T-cell deficient Rag knock-out mice. Our data add substantial knowledge about the molecular mechanisms to prevent inflammation and maintain tissue tolerance

    Space‐time NURBS‐enhanced finite elements for free‐surface flows in 2D

    Get PDF
    The accuracy of numerical simulations of free‐surface flows depends strongly on the computation of geometric quantities like normal vectors and curvatures. This geometrical information is additional to the actual degrees of freedom and usually requires a much finer discretization of the computational domain than the flow solution itself. Therefore, the utilization of a numerical method, which uses standard functions to discretize the unknown function in combination with an enhanced geometry representation is a natural step to improve the simulation efficiency. An example of such method is the NURBS‐enhanced finite element method (NEFEM), recently proposed by Sevilla et al. The current paper discusses the extension of the spatial NEFEM to space‐time methods and investigates the application of space‐time NURBS‐enhanced elements to free‐surface flows. Derived is also a kinematic rule for the NURBS motion in time, which is able to preserve mass conservation over time. Numerical examples show the ability of the space‐time NEFEM to account for both pressure discontinuities and surface tension effects and compute smooth free‐surface forms. For these examples, the advantages of the NEFEM compared with the classical FEM are shown.&nbsp
    corecore