137 research outputs found

    The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus Protostars. VI. Characterizing the Formation Mechanism for Close Multiple Systems

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of multiple protostar systems in the Perseus molecular cloud previously detected by the Karl G. Jansky Very Large Array (VLA). We observed 17 close (<<600~AU separation) multiple systems at 1.3~mm in continuum and five molecular lines (i.e., \twco, \cateo, \thco, H2_2CO, SO) to characterize the circum-multiple environments in which these systems are forming. We detect at least one component in the continuum for the 17 multiple systems. In three systems, one companion is not detected, and for two systems the companions are unresolved at our observed resolution. We also detect circum-multiple dust emission toward 8 out of 9 Class 0 multiples. Circum-multiple dust emission is not detected toward any of the 8 Class I multiples. Twelve systems are detected in the dense gas tracers toward their disks/inner envelopes. For these 12 systems, we use the dense gas observations to characterize their formation mechanism. The velocity gradients in the circum-multiple gas are clearly orthogonal to the outflow directions in 8 out of the 12 systems, consistent with disk fragmentation. Moreover, only two systems with separations <<200~AU are \textit{inconsistent} with disk fragmentation, in addition to the two widest systems (>>500~AU). Our results suggest that disk fragmentation via gravitational instability is an important formation mechanism for close multiple systems, but further statistics are needed to better determine the relative fraction formed via this method.Comment: 48 Pages, 26 Figures, 7 Tables, Accepted by Ap

    High Resolution 8 mm and 1 cm Polarization of IRAS 4A from the VLA Nascent Disk and Multiplicity (VANDAM) Survey

    Get PDF
    Magnetic fields can regulate disk formation, accretion and jet launching. Until recently, it has been difficult to obtain high resolution observations of the magnetic fields of the youngest protostars in the critical region near the protostar. The VANDAM survey is observing all known protostars in the Perseus Molecular Cloud. Here we present the polarization data of IRAS 4A. We find that with ~ 0.2'' (50 AU) resolution at {\lambda} = 8.1 and 10.3 mm, the inferred magnetic field is consistent with a circular morphology, in marked contrast with the hourglass morphology seen on larger scales. This morphology is consistent with frozen-in field lines that were dragged in by rotating material entering the infall region. The field morphology is reminiscent of rotating circumstellar material near the protostar. This is the first polarization detection of a protostar at these wavelengths. We conclude from our observations that the dust emission is optically thin with {\beta} ~ 1.3, suggesting that mm/cm-sized grains have grown and survived in the short lifetime of the protostar.Comment: Accepted to ApJL. 13 pages, 4 figure

    An ALMA Search for Substructure, Fragmentation, and Hidden Protostars in Starless Cores in Chamaeleon I

    Full text link
    We present an Atacama Large Millimeter/submillimeter Array (ALMA) 106 GHz (Band 3) continuum survey of the complete population of dense cores in the Chamaeleon I molecular cloud. We detect a total of 24 continuum sources in 19 different target fields. All previously known Class 0 and Class I protostars in Chamaeleon I are detected, whereas all of the 56 starless cores in our sample are undetected. We show that the Spitzer+Herschel census of protostars in Chamaeleon I is complete, with the rate at which protostellar cores have been misclassified as starless cores calculated as <1/56, or < 2%. We use synthetic observations to show that starless cores collapsing following the turbulent fragmentation scenario are detectable by our ALMA observations when their central densities exceed ~10^8 cm^-3, with the exact density dependent on the viewing geometry. Bonnor-Ebert spheres, on the other hand, remain undetected to central densities at least as high as 10^10 cm^-3. Our starless core non-detections are used to infer that either the star formation rate is declining in Chamaeleon I and most of the starless cores are not collapsing, matching the findings of previous studies, or that the evolution of starless cores are more accurately described by models that develop less substructure than predicted by the turbulent fragmentation scenario, such as Bonnor-Ebert spheres. We outline future work necessary to distinguish between these two possibilities.Comment: Accepted by Ap

    Kinematic Analysis of a Protostellar Multiple System: Measuring the Protostar Masses and Assessing Gravitational Instability in the Disks of L1448 IRS3B and L1448 IRS3A

    Full text link
    We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations towards a compact (230~au separation) triple protostar system, L1448 IRS3B, at 879~\micron with \contbeam~resolution. Spiral arm structure within the circum-multiple disk is well resolved in dust continuum toward IRS3B, and we detect the known wide (2300~au) companion, IRS3A, also resolving possible spiral substructure. Using dense gas tracers, C17O, H13CO++, and H13CN, we resolve the Keplerian rotation for both the circum-triple disk in IRS3B and the disk around IRS3A. Furthermore, we use the molecular line kinematic data and radiative transfer modeling of the molecular line emission to confirm that the disks are in Keplerian rotation with fitted masses of 1.190.07+0.131.19^{+0.13}_{-0.07} for IRS3B-ab, 1.510.07+0.061.51^{+0.06}_{-0.07}~Msun for IRS3A, and place an upper limit on the central protostar mass for the tertiary IRS3B-c of 0.2~Msun. We measure the mass of the fragmenting disk of IRS3B to be 0.29~Msun from the dust continuum emission of the circum-multiple disk and estimate the mass of the clump surrounding IRS3B-c to be 0.07~Msun. We also find that the disk around IRS3A has a mass of 0.04~Msun. By analyzing the Toomre~Q parameter, we find the IRS3A circumstellar disk is gravitationally stable (Q>>5), while the IRS3B disk is consistent with a gravitationally unstable disk (Q<<1) between the radii 200-500~au. This coincides with the location of the spiral arms and the tertiary companion IRS3B-c, supporting the hypothesis that IRS3B-c was formed in situ via fragmentation of a gravitationally unstable disk

    The VLA Nascent Disk And Multiplicity (VANDAM) Survey of Perseus Protostars. Resolving the Sub-Arcsecond Binary System in NGC 1333 IRAS2A

    Full text link
    We are conducting a Jansky VLA Ka-band (8 mm and 1 cm) and C-band (4 cm and 6.4 cm) survey of all known protostars in the Perseus Molecular Cloud, providing resolution down to \sim0.06'' and \sim0.35" in Ka-band and C-band, respectively. Here we present first results from this survey that enable us to examine the source NGC 1333 IRAS2A in unprecedented detail and resolve it into a proto-binary system separated by 0.621"±\pm0.006" (\sim143 AU) at 8 mm, 1 cm, and 4 cm. These 2 sources (IRAS2A VLA1 and VLA2) are likely driving the two orthogonal outflows known to originate from IRAS2A. The brighter source IRAS2A VLA1 is extended perpendicular to its outflow in the VLA data, with a deconvolved size of 0.055" (\sim13 AU), possibly tracing a protostellar disk. The recently reported candidate companions (IRAS2A MM2 and MM3) are not detected in either our VLA data, CARMA 1.3 mm data, or SMA 850 μ\mum data. SMA CO (J=32J=3\rightarrow2), CARMA CO (J=21J=2\rightarrow1), and lower resolution CARMA CO (J=10J=1\rightarrow0) observations are used to examine the outflow origins and the nature of the candidate companions to IRAS2A VLA1. The CO (J=32J=3\rightarrow2) and (J=21J=2\rightarrow1) data show that IRAS2A MM2 is coincident with a bright CO emission spot in the east-west outflow, and IRAS2A MM3 is within the north-south outflow. In contrast, IRAS2A VLA2 lies at the east-west outflow symmetry point. We propose that IRAS2A VLA2 is the driving source of the East-West outflow and a true companion to IRAS2A VLA1, whereas IRAS2A MM2 and MM3 may not be protostellar.Comment: Accepted to ApJ, 27 pages, 6 Figures, 2 Table

    The VLA Nascent Disk And Multiplicity Survey of Perseus Protostars (VANDAM). IV. Free-Free Emission from Protostars: Links to Infrared Properties, Outflow Tracers, and Protostellar Disk Masses

    Full text link
    Emission from protostars at centimeter radio wavelengths has been shown to trace the free-free emission arising from ionizing shocks as a result of jets and outflows driven by protostars. Therefore, measuring properties of protostars at radio frequencies can provide valuable insights into the nature of their outflows and jets. We present a C-band (4.1 cm and 6.4 cm) survey of all known protostars (Class 0 and Class I) in Perseus as part of the VLA Nascent Disk and Multiplicity (VANDAM) Survey. We examine the known correlations between radio flux density and protostellar parameters such as bolometric luminosity and outflow force, for our sample. We also investigate the relationship between radio flux density and far-infrared line luminosities from Herschel. We show that free-free emission originates most likely from J-type shocks; however, the large scatter indicates that those two types of emission probe different time and spatial scales. Using C-band fluxes, we removed an estimation of free-free contamination from the corresponding Ka-band (9 mm) flux densities that primarily probe dust emission from embedded disks. We find that the compact (<<~1") dust emission is lower for Class I sources (median dust mass 96 M_{\oplus}) relative to Class 0 (248 M_{\oplus}), but several times higher than in Class II (5-15 M_{\oplus}). If this compact dust emission is tracing primarily the embedded disk, as is likely for many sources, this result provides evidence for decreasing disk masses with protostellar evolution, with sufficient mass for forming giant planet cores primarily at early times.Comment: 90 pages, 21 figures, 10 tables; accepted for publication in ApJ
    corecore