4 research outputs found
Plant Science Decadal Vision 2020-2030: Reimagining the Potential of Plants for a Healthy and Sustainable Future
Plants, and the biological systems around them, are key to the future health of the planet and its inhabitants. The Plant Science Decadal Vision 2020ā2030 frames our ability to perform vital and farāreaching research in plant systems sciences, essential to how we value participants and apply emerging technologies. We outline a comprehensive vision for addressing some of our most pressing global problems through discovery, practical applications, and education. The Decadal Vision was developed by the participants at the Plant Summit 2019, a community event organized by the Plant Science Research Network. The Decadal Vision describes a holistic vision for the next decade of plant science that blends recommendations for research, people, and technology. Going beyond discoveries and applications, we, the plant science community, must implement bold, innovative changes to research cultures and training paradigms in this era of automation, virtualization, and the looming shadow of climate change. Our vision and hopes for the next decade are encapsulated in the phrase reimagining the potential of plants for a healthy and sustainable future. The Decadal Vision recognizes the vital intersection of human and scientific elements and demands an integrated implementation of strategies for research (Goals 1ā4), people (Goals 5 and 6), and technology (Goals 7 and 8). This report is intended to help inspire and guide the research community, scientific societies, federal funding agencies, private philanthropies, corporations, educators, entrepreneurs, and early career researchers over the next 10 years. The research encompass experimental and computational approaches to understanding and predicting ecosystem behavior; novel production systems for food, feed, and fiber with greater crop diversity, efficiency, productivity, and resilience that improve ecosystem health; approaches to realize the potential for advances in nutrition, discovery and engineering of plantābased medicines, and "green infrastructure." Launching the Transparent Plant will use experimental and computational approaches to break down the phytobiome into a "parts store" that supports tinkering and supports query, prediction, and rapidāresponse problem solving. Equity, diversity, and inclusion are indispensable cornerstones of realizing our vision. We make recommendations around funding and systems that support customized professional development. Plant systems are frequently taken for granted therefore we make recommendations to improve plant awareness and community science programs to increase understanding of scientific research. We prioritize emerging technologies, focusing on nonāinvasive imaging, sensors, and plugāandāplay portable lab technologies, coupled with enabling computational advances. Plant systems science will benefit from data management and future advances in automation, machine learning, natural language processing, and artificial intelligenceāassisted data integration, pattern identification, and decision making. Implementation of this vision will transform plant systems science and ripple outwards through society and across the globe. Beyond deepening our biological understanding, we envision entirely new applications. We further anticipate a wave of diversification of plant systems practitioners while stimulating community engagement, underpinning increasing entrepreneurship. This surge of engagement and knowledge will help satisfy and stoke people's natural curiosity about the future, and their desire to prepare for it, as they seek fuller information about food, health, climate and ecological systems
Recommended from our members
Community-Driven Metadata Standards for Agricultural Microbiome Research
Accelerating the pace of microbiome science to enhance crop productivity and agroecosystem health will require transdisciplinary studies, comparisons among datasets, and synthetic analyses of research from diverse crop management contexts. However, despite the widespread availability of crop-associated microbiome data, variation in field sampling and laboratory processing methodologies, as well as metadata collection and reporting, significantly constrains the potential for integrative and comparative analyses. Here we discuss the need for agriculture-specific metadata standards for microbiome research, and propose a list of ārequiredā and ādesirableā metadata categories and ontologies essential to be included in a future minimum information metadata standards checklist for describing agricultural microbiome studies. We begin by briefly reviewing existing metadata standards relevant to agricultural microbiome research, and describe ongoing efforts to enhance the potential for integration of data across research studies. Our goal is not to delineate a fixed list of metadata requirements. Instead, we hope to advance the field by providing a starting point for discussion, and inspire researchers to adopt standardized procedures for collecting and reporting consistent and well-annotated metadata for agricultural microbiome research