585 research outputs found
Molecular effects in the ionization of N, O and F by intense laser fields
In this paper we study the response in time of N, O and F to
laser pulses having a wavelength of 390nm. We find single ionization
suppression in O and its absence in F, in accordance with experimental
results at nm. Within our framework of time-dependent density
functional theory we are able to explain deviations from the predictions of
Intense-Field Many-Body -Matrix Theory (IMST). We confirm the connection of
ionization suppression with destructive interference of outgoing electron waves
from the ionized electron orbital. However, the prediction of ionization
suppression, justified within the IMST approach through the symmetry of the
highest occupied molecular orbital (HOMO), is not reliable since it turns out
that, e.g. in the case of F, the electronic response to the laser pulse is
rather complicated and does not lead to dominant depletion of the HOMO.
Therefore, the symmetry of the HOMO is not sufficient to predict ionization
suppression. However, at least for F, the symmetry of the dominantly
ionized orbital is consistent with the non-suppression of ionization.Comment: 19 pages, 5 figure
Crater population and resurfacing of the Martian north polar layered deposits
Present-day accumulation in the north polar layered deposits (NPLD) is thought to occur via deposition on the north polar residual cap. Understanding current mass balance in relation to current climate would provide insight into the climatic record of the NPLD. To constrain processes and rates of NPLD resurfacing, a search for craters was conducted using images from the Mars Reconnaissance Orbiter Context Camera. One hundred thirty craters have been identified on the NPLD, 95 of which are located within a region defined to represent recent accumulation. High Resolution Imaging Science Experiment images of craters in this region reveal a morphological sequence of crater degradation that provides a qualitative understanding of processes involved in crater removal. A classification system for these craters was developed based on the amount of apparent degradation and infilling and where possible depth/diameter ratios were determined. The temporal and spatial distribution of crater degradation is interpreted to be close to uniform. Through comparison of the size-frequency distribution of these craters with the expected production function, the craters are interpreted to be an equilibrium population with a crater of diameter D meters having a lifetime of ~30.75D^(1.14) years. Accumulation rates within these craters are estimated at 7.2D^(−0.14) mm/yr, which corresponds to values of ~3–4 mm/yr and are much higher than rates thought to apply to the surrounding flat terrain. The current crater population is estimated to have accumulated in the last ~20 kyr or less
On the Whitehead spectrum of the circle
The seminal work of Waldhausen, Farrell and Jones, Igusa, and Weiss and
Williams shows that the homotopy groups in low degrees of the space of
homeomorphisms of a closed Riemannian manifold of negative sectional curvature
can be expressed as a functor of the fundamental group of the manifold. To
determine this functor, however, it remains to determine the homotopy groups of
the topological Whitehead spectrum of the circle. The cyclotomic trace of B
okstedt, Hsiang, and Madsen and a theorem of Dundas, in turn, lead to an
expression for these homotopy groups in terms of the equivariant homotopy
groups of the homotopy fiber of the map from the topological Hochschild
T-spectrum of the sphere spectrum to that of the ring of integers induced by
the Hurewicz map. We evaluate the latter homotopy groups, and hence, the
homotopy groups of the topological Whitehead spectrum of the circle in low
degrees. The result extends earlier work by Anderson and Hsiang and by Igusa
and complements recent work by Grunewald, Klein, and Macko.Comment: 52 page
Water induced sediment levitation enhances downslope transport on Mars
On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought
Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars
Columbus crater in the Terra Sirenum region of the Martian southern highlands contains light-toned layered deposits with interbedded sulfate and phyllosilicate minerals, a rare occurrence on Mars. Here we investigate in detail the morphology, thermophysical properties, mineralogy, and stratigraphy of these deposits; explore their regional context; and interpret the crater's aqueous history. Hydrated mineral-bearing deposits occupy a discrete ring around the walls of Columbus crater and are also exposed beneath younger materials, possibly lava flows, on its floor. Widespread minerals identified in the crater include gypsum, polyhydrated and monohydrated Mg/Fe-sulfates, and kaolinite; localized deposits consistent with montmorillonite, Fe/Mg-phyllosilicates, jarosite, alunite, and crystalline ferric oxide or hydroxide are also detected. Thermal emission spectra suggest abundances of these minerals in the tens of percent range. Other craters in northwest Terra Sirenum also contain layered deposits and Al/Fe/Mg-phyllosilicates, but sulfates have so far been found only in Columbus and Cross craters. The region's intercrater plains contain scattered exposures of Al-phyllosilicates and one isolated mound with opaline silica, in addition to more common Fe/Mg-phyllosilicates with chlorides. A Late Noachian age is estimated for the aqueous deposits in Columbus, coinciding with a period of inferred groundwater upwelling and evaporation, which (according to model results reported here) could have formed evaporites in Columbus and other craters in Terra Sirenum. Hypotheses for the origin of these deposits include groundwater cementation of crater-filling sediments and/or direct precipitation from subaerial springs or in a deep (∼900 m) paleolake. Especially under the deep lake scenario, which we prefer, chemical gradients in Columbus crater may have created a habitable environment at this location on early Mars
Systems analysis of bioenergetics and growth of the extreme halophile Halobacterium salinarum
Halobacterium salinarum is a bioenergetically flexible, halophilic microorganism that can generate energy by respiration, photosynthesis, and the fermentation of arginine. In a previous study, using a genome-scale metabolic model, we have shown that the archaeon unexpectedly degrades essential amino acids under aerobic conditions, a behavior that can lead to the termination of growth earlier than necessary. Here, we further integratively investigate energy generation, nutrient utilization, and biomass production using an extended methodology that accounts for dynamically changing transport patterns, including those that arise from interactions among the supplied metabolites. Moreover, we widen the scope of our analysis to include phototrophic conditions to explore the interplay between different bioenergetic modes. Surprisingly, we found that cells also degrade essential amino acids even during phototropy, when energy should already be abundant. We also found that under both conditions considerable amounts of nutrients that were taken up were neither incorporated into the biomass nor used as respiratory substrates, implying the considerable production and accumulation of several metabolites in the medium. Some of these are likely the products of forms of overflow metabolism. In addition, our results also show that arginine fermentation, contrary to what is typically assumed, occurs simultaneously with respiration and photosynthesis and can contribute energy in levels that are comparable to the primary bioenergetic modes, if not more. These findings portray a picture that the organism takes an approach toward growth that favors the here and now, even at the cost of longer-term concerns. We believe that the seemingly "greedy" behavior exhibited actually consists of adaptations by the organism to its natural environments, where nutrients are not only irregularly available but may altogether be absent for extended periods that may span several years. Such a setting probably predisposed the cells to grow as much as possible when the conditions become favorable
Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer
Heterogeneous ribonucleoprotein K (hnRNP K) is a member of the hnRNP family which has several different cellular roles including transcription, mRNA shuttling, RNA editing and translation. Several reports implicate hnRNP K having a role in tumorigenesis, for instance hnRNP K increases transcription of the oncogene c-myc and hnRNP K expression is regulated by the p53/MDM 2 pathway. In this study comparing normal colon to colorectal cancer by proteomics, hnRNP K was identified as being overexpressed in this type of cancer. Immunohistochemistry with a monoclonal antibody to hnRNP K (which we developed) on colorectal cancer tissue microarray, confirmed that hnRNP K was overexpressed in colorectal cancer (P<0.001) and also showed that hnRNP K had an aberrant subcellular localisation in cancer cells. In normal colon hnRNP K was exclusively nuclear whereas in colorectal cancer the protein localised both in the cytoplasm and the nucleus. There were significant increases in both nuclear (P=0.007) and cytoplasmic (P=0.001) expression of hnRNP K in Dukes C tumours compared with early stage tumours. In Dukes C patient's good survival was associated with increased hnRNP K nuclear expression (P=0.0093). To elaborate on the recent observation that hnRNP K is regulated by p53, the expression profiles of these two proteins were also analysed. There was no correlation between hnRNP K and p53 expression, however, patients who presented tumours that were positive for hnRNP K and p53 had a poorer survival outcome (P=0.045)
Comparative analysis of homology models of the Ah receptor ligand binding domain: Verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness. © 2013 American Chemical Society
Effects of air pollution and the introduction of the London Low Emission Zone on the prevalence of respiratory and allergic symptoms in schoolchildren in East London: a sequential cross-sectional study
The adverse effects of traffic-related air pollution on children’s respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8–9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00–1.02), NO2 (1.03, 1.00–1.06), PM10 (1.16, 1.04–1.28) and PM2.5 (1.38, 1.08–1.78), all per μg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions
- …