45 research outputs found
Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response
Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven âundruggableâ, Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with âŒ50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or âundruggableâ targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of âŒ2â8% and crystal structures from âŒ1.8 to 3.2 Ă
. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1)
Signal transduction in a covalent post-assembly modification cascade
Natural reaction cascades control the movement of biomolecules between cellular compartments. Inspired by these systems, we report a synthetic reaction cascade employing post-assembly modification reactions to direct the partitioning of supramolecular complexes between phases. The system is composed of a self-assembled tetrazine-edged FeII8L12 cube and a maleimide-functionalized FeII4L6 tetrahedron. Norbornadiene (NBD) functions as the stimulus that triggers the cascade, beginning with the inverse-electron-demand DielsâAlder reaction of NBD with the tetrazine moieties of the cube. This reaction generates cyclopentadiene as a transient by-product, acting as a relay signal that subsequently undergoes a DielsâAlder reaction with the maleimide-functionalized tetrahedron. Cyclooctyne can selectively inhibit the cascade by outcompeting NBD as the initial trigger. Initiating the cascade with 2-octadecyl NBD leads to selective alkylation of the tetrahedron upon cascade completion. The increased lipophilicity of the C18-tagged tetrahedron drives this complex into a non-polar phase, allowing its isolation from the initially inseparable mixture of complexes
A New Drug Discovery Platform: Application to DNA Polymerase Eta and Apurinic/Apyrimidinic Endonuclease 1
The ability to quickly discover reliable hits from screening and rapidly convert them into lead compounds, which can be verified in functional assays, is central to drug discovery. The expedited validation of novel targets and the identification of modulators to advance to preclinical studies can significantly increase drug development success. Our SaXPyTM (âSAR by X-ray Poses Quicklyâ) platform, which is applicable to any X-ray crystallography-enabled drug target, couples the established methods of protein X-ray crystallography and fragment-based drug discovery (FBDD) with advanced computational and medicinal chemistry to deliver small molecule modulators or targeted protein degradation ligands in a short timeframe. Our approach, especially for elusive or âundruggableâ targets, allows for (i) hit generation; (ii) the mapping of proteinâligand interactions; (iii) the assessment of target ligandability; (iv) the discovery of novel and potential allosteric binding sites; and (v) hit-to-lead execution. These advances inform chemical tractability and downstream biology and generate novel intellectual property. We describe here the application of SaXPy in the discovery and development of DNA damage response inhibitors against DNA polymerase eta (Pol η or POLH) and apurinic/apyrimidinic endonuclease 1 (APE1 or APEX1). Notably, our SaXPy platform allowed us to solve the first crystal structures of these proteins bound to small molecules and to discover novel binding sites for each target