95 research outputs found

    Atypical chemokine receptor 4 shapes activated B cell fate

    Get PDF
    Activated B cells can initially differentiate into three functionally distinct fates-early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells-by mechanisms that remain poorly understood. Here, we identify atypical chemokine receptor 4 (ACKR4), a decoy receptor that binds and degrades CCR7 ligands CCL19/CCL21, as a regulator of early activated B cell differentiation. By restricting initial access to splenic interfollicular zones (IFZs), ACKR4 limits the early proliferation of activated B cells, reducing the numbers available for subsequent differentiation. Consequently, ACKR4 deficiency enhanced early PB and GC B cell responses in a CCL19/CCL21-dependent and B cell-intrinsic manner. Conversely, aberrant localization of ACKR4-deficient activated B cells to the IFZ was associated with their preferential commitment to the early PB linage. Our results reveal a regulatory mechanism of B cell trafficking via an atypical chemokine receptor that shapes activated B cell fate

    Disease prevention not decolonization – a model for fecal microbiota transplantation in patients colonized with multidrug-resistant organisms

    Get PDF
    Fecal microbiota transplantation (FMT) yields variable intestinal decolonization results for multidrug-resistant organisms (MDROs). This study showed significant reductions in antibiotic duration, bacteremia and length of stay in 20 patients colonized/ infected with MDRO receiving FMT (compared to pre-FMT history, and a matched group not receiving FMT), despite modest decolonization rates

    ‘Sons of athelings given to the earth’: Infant Mortality within Anglo-Saxon Mortuary Geography

    Get PDF
    FOR 20 OR MORE YEARS early Anglo-Saxon archaeologists have believed children are underrepresented in the cemetery evidence. They conclude that excavation misses small bones, that previous attitudes to reporting overlook the very young, or that infants and children were buried elsewhere. This is all well and good, but we must be careful of oversimplifying compound social and cultural responses to childhood and infant mortality. Previous approaches have offered methodological quandaries in the face of this under-representation. However, proportionally more infants were placed in large cemeteries and sometimes in specific zones. This trend is statistically significant and is therefore unlikely to result entirely from preservation or excavation problems. Early medieval cemeteries were part of regional mortuary geographies and provided places to stage events that promoted social cohesion across kinship systems extending over tribal territories. This paper argues that patterns in early Anglo-Saxon infant burial were the result of female mobility. Many women probably travelled locally to marry in a union which reinforced existing social networks. For an expectant mother, however, the safest place to give birth was with experience women in her maternal home. Infant identities were affected by personal and legal association with their mother’s parental kindred, so when an infant died in childbirth or months and years later, it was their mother’s identity which dictated burial location. As a result, cemeteries central to tribal identities became places to bury the sons and daughters of a regional tribal aristocracy

    Quantum dynamics as a physical resource

    Get PDF
    How useful is a quantum dynamical operation for quantum information processing? Motivated by this question we investigate several strength measures quantifying the resources intrinsic to a quantum operation. We develop a general theory of such strength measures, based on axiomatic considerations independent of state-based resources. The power of this theory is demonstrated with applications to quantum communication complexity, quantum computational complexity, and entanglement generation by unitary operations.Comment: 19 pages, shortened by 3 pages, mainly cosmetic change

    Atypical chemokine receptor 4 shapes activated B cell fate

    Get PDF
    Activated B cells can initially differentiate into three functionally distinct fates-early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells-by mechanisms that remain poorly understood. Here, we identify atypical chemokine receptor 4 (ACKR4), a decoy receptor that binds and degrades CCR7 ligands CCL19/CCL21, as a regulator of early activated B cell differentiation. By restricting initial access to splenic interfollicular zones (IFZs), ACKR4 limits the early proliferation of activated B cells, reducing the numbers available for subsequent differentiation. Consequently, ACKR4 deficiency enhanced early PB and GC B cell responses in a CCL19/CCL21-dependent and B cell-intrinsic manner. Conversely, aberrant localization of ACKR4-deficient activated B cells to the IFZ was associated with their preferential commitment to the early PB linage. Our results reveal a regulatory mechanism of B cell trafficking via an atypical chemokine receptor that shapes activated B cell fate.This work was supported in part by a grant from the Australian National Health and Medical Research Council (APP1105312) to S.R. McColl, J.G. Cyster, and I. Comerford, J.G. Cyster is an investigator of the Howard Hughes Medical Institute. E.E. Kara is supported by an Australian postgraduate award, a Norman and Patricia Polglase scholarship, and a National Health and Medical Research Council C.J. Martin Overseas Biomedical fellowship

    BAT117213:Ileal bile acid transporter (IBAT) inhibition as a treatment for pruritus in primary biliary cirrhosis: study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Pruritus (itch) is a symptom commonly experienced by patients with cholestatic liver diseases such as primary biliary cholangitis (PBC, previously referred to as primary biliary cirrhosis). Bile acids (BAs) have been proposed as potential pruritogens in PBC. The ileal bile acid transporter (IBAT) protein expressed in the distal ileum plays a key role in the enterohepatic circulation of BAs. Pharmacological inhibition of IBAT with GSK2330672 may reduce BA levels in the systemic circulation and improve pruritus. METHODS: This clinical study (BAT117213 study) is sponsored by GlaxoSmithKline (GSK) with associated exploratory studies supported by the National Institute for Health Research (NIHR). It is a phase 2a, multi-centre, randomised, double bind, placebo controlled, cross-over trial for PBC patients with pruritus. The primary objective is to investigate the safety and tolerability of repeat doses of GSK2330672, and explore whether GSK2330672 administration for 14 days improves pruritus compared with placebo. The key outcomes include improvement in pruritus scores evaluated on a numerical rating scale and other PBC symptoms in an electronic diary completed twice daily by the patients. The secondary outcomes include the evaluation of the effect of GSK2330672 on total serum bile acid (BA) concentrations, serum markers of BA synthesis and steady-state pharmacokinetics of ursodeoxycholic acid (UDCA). DISCUSSION: BAT117213 study is the first randomised controlled crossover trial of ileal bile acid transporter inhibitor, a novel class of drug to treat pruritus in PBC. The main strengths of the trial are utility of a novel, study specific, electronic symptom diary as patient reported outcome to measure the treatment response objectively and the crossover design that allows estimating the treatment effect in a smaller number of patients. The outcome of this trial will inform the trial design of future development phase of the IBAT inhibitor drug. The trial will also provide opportunity to conduct metabonomic and gut microbiome studies as explorative and mechanistic research in patients with cholestatic pruritus. TRIAL REGISTRATION: EudraCT number: 2012-005531-84, ClinicalTrials.gov Identifier: NCT01899703, registered on 3(rd) July 201

    Characteristics of Early Paget's Disease in SQSTM1 Mutation Carriers: Baseline Analysis of the ZiPP Study Cohort

    Get PDF
    Mutations in SQSTM1 are strongly associated with Paget's disease of bone (PDB), but little is known about the clinical characteristics of those with early disease. Radionuclide bone scans, biochemical markers of bone turnover, and clinical characteristics were analyzed in SQSTM1 mutation carriers who took part in the Zoledronic acid in the Prevention of Paget's disease (ZiPP) study. We studied 222 individuals, of whom 54.9% were female, with mean ± SE age of 50.1 ± 0.6 years. Twelve SQSTM1 mutations were observed, including p.Pro392Leu, which was present in 141 of 222 (63.5%) subjects. Bone scan examination revealed evidence of PDB in 20 subjects (9.0%), ten of whom (50%) had a single affected site. Participants with lesions were older than those without lesions but the difference was not significant (53.6 ± 9.1 versus 49.8 ± 8.9; p =.07). The mean age of participants with lesions was not significantly different from the age at which their parents were diagnosed with PDB (55 years versus 59 years, p =.17). All individuals with lesions were asymptomatic. Serum concentrations of total alkaline phosphatase (ALP) normalized to the upper limit of normal in each center were higher in those with lesions (0.75 ± 0.69 versus 0.42 ± 0.29 arbitary units; p <.0001). Similar findings were observed for other biochemical markers of bone turnover, but the sensitivity of ALP and other markers in detecting lesions was poor. Asymptomatic PDB is present in about 9% of SQSTM1 mutation carriers by the fifth decade. Further follow-up of this cohort will provide important information on the natural history of early PDB and its response to treatment. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research

    Codon usage in vertebrates is associated with a low risk of acquiring nonsense mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Codon usage in genomes is biased towards specific subsets of codons. Codon usage bias affects translational speed and accuracy, and it is associated with the tRNA levels and the GC content of the genome. Spontaneous mutations drive genomes to a low GC content. Active cellular processes are needed to maintain a high GC content, which influences the codon usage of a species. Loss-of-function mutations, such as nonsense mutations, are the molecular basis of many recessive alleles, which can greatly affect the genome of an organism and are the cause of many genetic diseases in humans.</p> <p>Methods</p> <p>We developed an event based model to calculate the risk of acquiring nonsense mutations in coding sequences. Complete coding sequences and genomes of 40 eukaryotes were analyzed for GC and CpG content, codon usage, and the associated risk of acquiring nonsense mutations. We included one species per genus for all eukaryotes with available reference sequence.</p> <p>Results</p> <p>We discovered that the codon usage bias detected in genomes of high GC content decreases the risk of acquiring nonsense mutations (Pearson's <it>r </it>= -0.95; <it>P </it>< 0.0001). In the genomes of all examined vertebrates, including humans, this risk was lower than expected (0.93 ± 0.02; mean ± SD) and lower than the risk in genomes of non-vertebrates (1.02 ± 0.13; <it>P </it>= 0.019).</p> <p>Conclusions</p> <p>While the maintenance of a high GC content is energetically costly, it is associated with a codon usage bias harboring a low risk of acquiring nonsense mutations. The reduced exposure to this risk may contribute to the fitness of vertebrates.</p

    Incremental grouping of image elements in vision

    Get PDF
    One important task for the visual system is to group image elements that belong to an object and to segregate them from other objects and the background. We here present an incremental grouping theory (IGT) that addresses the role of object-based attention in perceptual grouping at a psychological level and, at the same time, outlines the mechanisms for grouping at the neurophysiological level. The IGT proposes that there are two processes for perceptual grouping. The first process is base grouping and relies on neurons that are tuned to feature conjunctions. Base grouping is fast and occurs in parallel across the visual scene, but not all possible feature conjunctions can be coded as base groupings. If there are no neurons tuned to the relevant feature conjunctions, a second process called incremental grouping comes into play. Incremental grouping is a time-consuming and capacity-limited process that requires the gradual spread of enhanced neuronal activity across the representation of an object in the visual cortex. The spread of enhanced neuronal activity corresponds to the labeling of image elements with object-based attention
    corecore