15,289 research outputs found

    A Damping of the de Haas-van Alphen Oscillations in the superconducting state

    Full text link
    Deploying a recently developed semiclassical theory of quasiparticles in the superconducting state we study the de Haas-van Alphen effect. We find that the oscillations have the same frequency as in the normal state but their amplitude is reduced. We find an analytic formulae for this damping which is due to tunnelling between semiclassical quasiparticle orbits comprising both particle-like and hole-like segments. The quantitative predictions of the theory are consistent with the available data.Comment: 7 pages, 5 figure

    Automorphisms of Partially Commutative Groups II: Combinatorial Subgroups

    Full text link
    We define several "standard" subgroups of the automorphism group Aut(G) of a partially commutative (right-angled Artin) group and use these standard subgroups to describe decompositions of Aut(G). If C is the commutation graph of G, we show how Aut(G) decomposes in terms of the connected components of C: obtaining a particularly clear decomposition theorem in the special case where C has no isolated vertices. If C has no vertices of a type we call dominated then we give a semi-direct decompostion of Aut(G) into a subgroup of locally conjugating automorphisms by the subgroup stabilising a certain lattice of "admissible subsets" of the vertices of C. We then characterise those graphs for which Aut(G) is a product (not necessarily semi-direct) of two such subgroups.Comment: 7 figures, 63 pages. Notation and definitions clarified and typos corrected. 2 new figures added. Appendix containing details of presentation and proof of a theorem adde

    Modelling sound propagation under ice using the Ocean Acoustics Library's Acoustic Toolbox

    Get PDF
    Acoustic propagation in the Arctic and Antarctic is largely characterised by the presence of a highly variable ice canopy. To model sound in these environments requires both a way of effectively representing the ice layer and modelling its effect on signal transmission. The Ocean Acoustics Library has a powerful open source Acoustics Toolbox that contains Fortran code for running Ray, Normal Mode, and Wavenumber Integration models. There are two parts to modelling a sea ice environment: modelling the ice as an elastic acoustic medium, and modelling the roughness of the ridging characteristics of the ice. This work considers the scenario of an Autonomous Underwater Vehicle (AUV) producing a survey under ridged sea ice. This specifies a range of interest of 10km and a frequency band of interest of 3kHz-13kHz. An overview of methods for modelling ice as an acoustic medium and as a ridged surface is provided, and the applicability of different propagation and ice models for this scenario is discussed. The scenario is then implemented as a specific test case for two example ice canopy profiles. The ice canopy profiles used are sea ice draft measurements recorded in the Arctic using an upward looking SONAR on a nuclear submarine. Beam and ray methods are the only computationally fast propagation codes for this frequency range and are included in the BELLHOP module of the Acoustics Toolbox. With these methods the options for including the elastic properties of the ice are limited and only include reduction in the coherent field on reflection. Two methods for including the ridging of the ice canopy are implemented, one statistically based and one using direct input of measured ice canopy data.The statistically based method uses Twersky boss scattering, and the direct method inputs the draft data as an altimetry file. Gaussian beam tracing using BELLHOP is run to generate ray trace and coherent transmission loss estimates of this environment. The advantages and limitations of these implementations are discussed with suggestions for future improvements to the Acoustics Toolbox to better model the ice scenarios outlined. The improvements identified from this review and test case are: the capability to include specific ice condition data where available, better consideration of the elastic properties of the ice in BELLHOP; and new statistical methods for modelling unknown variable surface boundaries that provide statistical distribution information as well as mean field values

    Limits on the Boron Isotopic Ratio in HD 76932

    Full text link
    Data in the 2090 A B region of HD 76932 have been obtained at high S/N using the HST GHRS echelle at a resolution of 90,000. This wavelength region has been previously identified as a likely candidate for observing the B11/B10 isotopic splitting. The observations do not match a calculated line profile extremely well at any abundance for any isotopic ratio. If the B abundance previously determined from observations at 2500 A is assumed, the calculated line profile is too weak, indicating a possible blending line. Assuming that the absorption at 2090 A is entirely due to boron, the best-fit total B abundance is higher than but consistent with that obtained at 2500 A, and the best-fit isotopic ratio (B11/B10) is in the range ~10:1 to ~4:1. If the absorption is not entirely due to B and there is an unknown blend, the best-fit isotopic ratio may be closer to 1:1. Future observations of a similar metal-poor star known to have unusually low B should allow us to distinguish between these two possibilities. The constraints that can be placed on the isotopic ratio based on comparisons with similar observations of HD 102870 and HD 61421 (Procyon) are also discussed.Comment: Accepted for Nov 1998 Ap

    Neck atonia with a focal stimulation-induced seizure arising from the SMA: pathophysiological considerations.

    Get PDF
    A 28-year-old patient with pharmacoresistant non-lesional right frontal epilepsy underwent extra-operative intracranial EEG recordings and electrical cortical stimulation (ECS) to map eloquent cortex. Right supplementary motor area (SMA) ECS induced a brief seizure with habitual symptoms involving neck tingling followed by asymmetric tonic posturing. An additional feature was neck atonia. During atonia and sensory aura, discharges were seen in the mesial frontal electrodes and precentral gyrus. Besides motor signs, atonia, although rare and not described in the neck muscles, and sensations have been reported with SMA stimulation. The mechanisms underlying neck atonia in seizures arising from the SMA can be explained by supplementary negative motor area (SNMA) - though this was not mapped in electrodes overlying the ictal onset zone in our patient - or primary sensorimotor cortex activation through rapid propagation. Given the broad spectrum of signs elicited by SMA stimulation and rapid spread of seizures arising from the SMA, caution should be taken to not diagnose these as non-epileptic, as had previously occurred in this patient

    Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model

    No full text
    International audienceTransport from the surface to the lowermost stratosphere (LMS) can occur on timescales of a few months or less, making it possible for short-lived tropospheric pollutants to influence stratospheric composition and chemistry. Models used to study this influence must demonstrate the credibility of their chemistry and transport in the upper troposphere and lower stratosphere (UT/LS). Data sets from satellite and aircraft instruments measuring CO, O3, N2O, and CO2 in the UT/LS are used to create a suite of diagnostics for the seasonally-varying transport into and within the lowermost stratosphere, and of the coupling between the troposphere and stratosphere in the extratropics. The diagnostics are used to evaluate a version of the Global Modeling Initiative (GMI) Chemistry and Transport Model (CTM) that uses a combined tropospheric and stratospheric chemical mechanism and meteorological fields from the GEOS-4 general circulation model. The diagnostics derived from N2O and O3 show that the model lowermost stratosphere has realistic input from the overlying high latitude stratosphere in all seasons. Diagnostics for the LMS show two distinct layers. The upper layer begins ~30 K potential temperature above the tropopause and has a strong annual cycle in its composition. The lower layer is a mixed region ~30 K thick near the tropopause that shows no clear seasonal variation in the degree of tropospheric coupling. Diagnostics applied to the GMI CTM show credible seasonally-varying transport in the LMS and a tropopause layer that is realistically coupled to the UT in all seasons. The vertical resolution of the GMI CTM in the UT/LS, ~1 km, is sufficient to realistically represent the extratropical tropopause layer. This study demonstrates that the GMI CTM has the transport credibility required to study the impact of tropospheric emissions on the stratosphere
    corecore