1,697 research outputs found

    Assessing the conservation status of mangroves in Rakhine, Myanmar

    Get PDF
    Ecosystem degradation is a key challenge that human society faces, as ecosystems provide services that are tied to human well-being. Particularly, mangrove ecosystems provide important services to communities but are suffering heavy degradation, loss and potential collapse due to anthropogenic activities. The IUCN Red List of Ecosystems is a transparent and consistent framework for assessing ecosystems' risk of collapse and is increasingly used to inform legislation and ecosystem management globally. Satellite data have become increasingly common in environmental monitoring due to their extensive spatial and temporal coverage. Here, recent advances in analyses using satellite-derived data were implemented to reassess the conservation status of the ‘Rakhine mangrove forest on mud’, an important intertidal ecosystem in Myanmar, extending a previous national Red List assessment that assessed the ecosystem as Critically Endangered. By incorporating additional data sources and analyses, the extended assessment produced more robust results and reduced the uncertainty in the previous assessment. Overall, the ecosystem was assessed as Critically Endangered (range: Vulnerable to Critically Endangered) as a result of historical mangrove extent loss. Recent losses and biotic disruptions were also observed, which would have led to the ecosystem being assessed as Vulnerable. While the final outcome of the Red List assessment remained at Critically Endangered due to the historical state of the mangroves pre-dating the temporal coverage from satellite data, the uncertainty of the ecosystem's status was reduced, and the reassessment highlighted the recent areal changes and mangrove degradation that has occurred. The importance of conducting reassessments when new data become available is discussed, and a template for future mangrove Red List assessments that use satellite data as their primary source of information to improve the robustness of their results is presented

    Refining the model of barrier island formation along a paraglacial coast in the Gulf of Maine

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Geology 307-310 (2012):40-57, doi:10.1016/j.margeo.2012.03.001.Details of the internal architecture and local geochronology of Plum Island, the longest barrier in the Gulf of Maine, has refined our understanding of barrier island formation in paraglacial settings. Ground-penetrating radar and shallow-seismic profiles coupled with sediment cores and radiocarbon dates provide an 8000-year evolutionary history of this barrier system in response to changes in sediment sources and supply rates as well as variability in the rate of sea-level change. The barrier sequence overlies tills of Wisconsinan and Illinoian glaciations as well as late Pleistocene glaciomarine clay deposited during the post-glacial sea-level highstand at approximately 17 ka. Holocene sediment began accumulating at the site of Plum Island at 7–8 ka, in the form of coarse fluvial channel-lag deposits related to the 50-m wide erosional channel of the Parker River that carved into underlying glaciomarine deposits during a lower stand of sea level. Plum Island had first developed in its modern location by ca. 3.6 ka through onshore migration and vertical accretion of reworked regressive and lowstand deposits. The prevalence of southerly, seaward-dipping layers indicates that greater than 60% of the barrier lithosome developed in its modern location through southerly spit progradation, consistent with a dominantly longshore transport system driven by northeast storms. Thinner sequences of northerly, landward-dipping clinoforms represent the northern recurve of the prograding spit. A 5–6-m thick inlet-fill sequence was identified overlying the lower stand fluvial deposit; its stratigraphy captures events of channel migration, ebb-delta breaching, onshore bar migration, channel shoaling and inlet infilling associated with the migration and eventual closing of the inlet. This inlet had a maximum cross-sectional area of 2800 m2 and was active around 3.5–3.6 ka. Discovery of this inlet suggests that the tidal prism was once larger than at present. Bay infilling, driven by the import of sediment into the backbarrier environment through tidal inlets, as well as minor sediment contribution from local rivers, led to a vast reduction in the bay tidal prism. This study demonstrates that, prior to about 3 ka, Plum Island and its associated marshes, tidal flats, and inlets were in a paraglacial environment; that is, their main source of sediment was derived from the erosion and reworking of glaciogenic deposits. Since that time, Plum Island has been in a state of dynamic equilibrium with its non-glacial sediment sources and therefore can be largely considered to be in a stable, “post-paraglacial” state. This study is furthermore the first in the Gulf of Maine to show that spit accretion and inlet processes were the dominant mechanisms in barrier island formation and thus serves as a foundation for future investigations of barrier development in response to backbarrier infilling.This study was funded by the Minerals Management Service (now the “Bureau of Ocean Energy Manegement, Regulation and Enforcement”), the USGS Eastern Geology and Paleoclimate Science Center, the USGS National Cooperative Geologic Mapping Program (State Map), a Geological Society of America (GSA) Student Research Grant, the American Association of Petroleum Geologists (AAPG) Grants-in-Aid program, and the Boston University Undergraduate Research Opportunities Program (UROP). Additionally, E. Carruthers was funded in part by the Clare Booth Luce Summer Research Fellowship and C. Hein was funded by the National Science Foundation (NSF) Graduate Research Fellowship

    Multiannual observations and modelling of seasonal thermal profiles through supraglacial debris in the Central Himalaya

    Get PDF
    Many glaciers in the Central Himalaya are covered with rock debris that modifies the transfer of heat from the atmosphere to the underlying ice. These debris-covered glaciers are experiencing rapid mass loss at rates that have accelerated during the last two decades. Quantifying recent and future glacier mass change requires understanding the relationship between debris thickness and ablation particularly through the summer monsoon season. We present air, near-surface and debris temperatures measured during three monsoon seasons at five sites on Khumbu Glacier in Nepal, and compare these results to similar measurements from two other debris-covered glaciers in this region. Seasonal debris temperature profiles are approximately linear and consistent between sites for thick (>?0.5?m) and thin (<?0.5?m) debris across thicknesses ranging from 0.26 to 2.0?m. The similarities between these multiannual data imply that they are representative of supraglacial debris layers in the monsoon-influenced Himalaya more generally. We compare three methods to calculate sub-debris ablation, including using our temperature measurements with a thermal diffusion model that incorporates a simplified treatment of debris moisture. Estimated ablation between 3 June and 11 October at around 5000?m above sea level ranged from 0.10?m water equivalent beneath 1.5?m of debris to 0.47?m water equivalent beneath 0.3?m debris. However, these values are small when compared to remotely observed rates of surface lowering, suggesting that mass loss from these debris-covered glaciers is greatly enhanced by supraglacial and englacial processes that locally amplify ablationauthorsversionPeer reviewe

    A “How-To” Guide for Designing Judgment Bias Studies to Assess Captive Animal Welfare

    Get PDF
    Robust methods to assess nonhuman animal emotion are essential for ensuring good welfare in captivity. Cognitive bias measures such as the judgment bias task have recently emerged as promising tools to assess animal emotion. The simple design and objective response measures make judgment bias tasks suitable for use across species and contexts. In reviewing 64 studies published to date, it emerged that (a) judgment biases have been measured in a number of mammals and birds and an invertebrate; (b) no study has tested judgment bias in any species of fish, amphibian, or reptile; and (c) no study has yet investigated judgment bias in a zoo or aquarium. This article proposes that judgment bias measures are highly suitable for use with these understudied taxa and can provide new insight into welfare in endangered species housed in zoos and aquariums, where poor welfare impacts breeding success and, ultimately, species survival. The article includes a “how-to” guide to designing judgment bias tests with recommendations for working with currently neglected “exotics” including fishes, amphibians, and reptiles

    Formulation of Small Activating RNA Into Lipidoid Nanoparticles Inhibits Xenograft Prostate Tumor Growth by Inducing p21 Expression

    Get PDF
    Application of RNA interference (RNAi) in the clinic has improved with the development of novel delivery reagents (e.g., lipidoids). Although RNAi promises a therapeutic approach at silencing gene expression, practical methods for enhancing gene production still remain a challenge. Previously, we reported that double-stranded RNA (dsRNA) can activate gene expression by targeting promoter sequence in a phenomenon termed RNA activation (RNAa). In the present study, we investigate the therapeutic potential of RNAa in prostate cancer xenografts by using lipidoid-based formulation to facilitate in vivo delivery. We identify a strong activator of gene expression by screening several dsRNAs targeting the promoter of tumor suppressor p21WAF1/ Cip1 (p21). Chemical modification is subsequently implemented to improve the medicinal properties of the candidate duplex. Lipidoid-encapsulated nanoparticle (LNP) formulation is validated as a delivery vehicle to mediate p21 induction and inhibit growth of prostate tumor xenografts grown in nude mice following intratumoral injection. We provide insight into the stepwise creation and analysis of a putative RNAa-based therapeutic with antitumor activity. Our results provide proof-of-principle that RNAa in conjunction with lipidioids may represent a novel approach for stimulating gene expression in vivo to treat disease

    Plastic and marine turtles: a review and call for research

    Get PDF
    Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including exposure to marine plastic pollution. Here, we review the evidence for the effects of plastic debris on turtles and their habitats, highlight knowledge gaps, and make recommendations for future research. We found that, of the seven species, all are known to ingest or become entangled in marine debris. Ingestion can cause intestinal blockage and internal injury, dietary dilution, malnutrition, and increased buoyancy which in turn can result in poor health, reduced growth rates and reproductive output, or death. Entanglement in plastic debris (including ghost fishing gear) is known to cause lacerations, increased drag—which reduces the ability to forage effectively or escape threats—and may lead to drowning or death by starvation. In addition, plastic pollution may impact key turtle habitats. In particular, its presence on nesting beaches may alter nest properties by affecting temperature and sediment permeability. This could influence hatchling sex ratios and reproductive success, resulting in population level implications. Additionally, beach litter may entangle nesting females or emerging hatchlings. Lastly, as an omnipresent and widespread pollutant, plastic debris may cause wider ecosystem effects which result in loss of productivity and implications for trophic interactions. By compiling and presenting this evidence, we demonstrate that urgent action is required to better understand this issue and its effects on marine turtles, so that appropriate and effective mitigation policies can be developed

    Comparison of measurements from different radio-echo sounding systems and synchronization with the ice core at Dome C, Antarctica

    Get PDF
    We present a compilation of radio-echo sounding (RES) measurements of five radar systems (AWI, BAS, CReSIS, INGV and UTIG) around the EPICA Dome C (EDC) drill site, East Antarctica. The aim of our study is to investigate the differences of the various systems in their resolution of internal reflection horizons (IRHs) and bedrock topography, penetration depth, and quality of imaging the basal layer. We address the questions of the compatibility of existing radar data for common interpretation, and the suitability of the individual systems for Oldest Ice reconnaissance surveys. We find that the most distinct IRHs and IRH patterns can be identified and transferred between most data sets. Considerable differences between the RES systems exist in range resolution and depiction of the basal layer. Considering both aspects, which we judge as crucial factors in the search for old ice, the CReSIS and the UTIG systems are the most valuable ones. In addition to the RES data set comparison we calculate a synthetic radar trace from EDC density and conductivity profiles. We identify ten common IRHs in the measured RES data and the synthetic trace. The reflection-causing conductivity sections are determined by sensitivity studies with the synthetic trace. In this way, we accomplish an accurate two-way travel time to depth conversion for the reflectors, without having to use a precise velocity-depth function that would accumulate depth uncertainties with increasing depth. The identified IRHs are assigned with the AICC2012 time scale age. Due to the isochronous character of these conductivity-caused IRHs, they are a means to extend the Dome C age structure by tracing the IRHs along the RES profiles

    Effects of Nonlinear Frequency Compression on Speech Identification in Children With Hearing Loss

    Get PDF
    This study evaluated effects of nonlinear frequency compression (NLFC) processing in children with hearing loss for consonant identification in quiet and for spondee identification in competing noise or speech. It was predicted that participants would benefit from NLFC for consonant identification in quiet when access to high-frequency information was critical, but that NLFC would be less beneficial, or even detrimental, when identification relied on mid-frequency cues. Further, it was hypothesized that NLFC could result in greater susceptibility to masking in the spondee task. The rationale for these predictions is that improved access to high-frequency information comes at the cost of decreased spectral resolution
    • 

    corecore