41 research outputs found

    Critical states and anomalous mobility edges in two-dimensional diagonal quasicrystals

    Full text link
    We study the single-particle properties of two-dimensional quasicrystals where the underlying geometry of the tight-binding lattice is crystalline but the on-site potential is quasicrystalline. We will focus on the 2D generalised Aubry-Andr\'e model which has a varying form to its quasiperiodic potential, through a deformation parameter and varied irrational periods of cosine terms, which allows a continuous family of on-site quasicrystalline models to be studied. We show that the 2D generalised Aubry-Andr\'e model exhibits single-particle mobility edges between extended and localised states and a localisation transition in a similar manner to the prior studied one-dimensional limit. However, we find that such models in two dimensions are dominated across large parameter regions by critical states. The presence of critical states results in anomalous mobility edges between both extended and critical and localised and critical states in the single-particle spectrum, even when there is no mobility edge between extended and localised states present. Due to this, these models exhibit anomalous diffusion of initially localised states across the majority of parameter regions, including deep in the normally localised regime. The presence of critical states in large parameter regimes and throughout the spectrum will have consequences for the many-body properties of quasicrystals, including the formation of the Bose glass and the potential to host a many-body localised phase.Comment: 11 pages, 13 figures, comments welcom

    Driven Topological Systems in the Classical Limit

    Full text link
    Periodically-driven quantum systems can exhibit topologically non-trivial behaviour, even when their quasi-energy bands have zero Chern numbers. Much work has been conducted on non-interacting quantum-mechanical models where this kind of behaviour is present. However, the inclusion of interactions in out-of-equilibrium quantum systems can prove to be quite challenging. On the other hand, the classical counterpart of hard-core interactions can be simulated efficiently via constrained random walks. The non-interacting model proposed by Rudner et al. [Phys. Rev. X 3, 031005 (2013)], has a special point for which the system is equivalent to a classical random walk. We consider the classical counterpart of this model, which is exact at a special point even when hard-core interactions are present, and show how these quantitatively affect the edge currents in a strip geometry. We find that the interacting classical system is well described by a mean-field theory. Using this we simulate the dynamics of the classical system, which show that the interactions play the role of Markovian, or time dependent disorder. By comparing the evolution of classical and quantum edge currents in small lattices, we find regimes where the classical limit considered gives good insight into the quantum problem.Comment: 15 pages, 15 figures, new content on the quantum mode

    Mean-field phases of an ultracold gas in a quasicrystalline potential

    Get PDF
    The recent experimental advancement to realise ultracold gases scattering off an eight-fold optical potential [Phys. Rev. Lett. 122, 110404 (2019)] heralds the beginning of a new technique to study the properties of quasicrystalline structures. Quasicrystals possess long-range order but are not periodic, and are still little studied in comparison to their periodic counterparts. Here, we consider an ultracold bosonic gas in an eight-fold symmetric lattice and assume a toy model where the atoms occupy the ground states of the local minima of the potential. The ground state phases of the system are studied, with particular interest in the local nature of the phases. The usual Mott-insulator, density wave, and supersolid phases of the standard and extended Bose-Hubbard model are observed. For non-zero long-range interactions, we find that density wave states can spontaneously break the eight-fold symmetry, and may even possess no rotational symmetry. We find the local variation in the number of nearest neighbours to play a vital role in the phase transitions, local structure, and global symmetries of the ground states. This variation in the number of nearest neighbours is not a unique property of the considered eight-fold lattice, and we expect our results to be generalisable to any quasicrystalline potential where there are only small position dependent variations in the site energy, tunnelling and interactions.Comment: 10 pages, 10 figures, accepted to PR

    Staggered Ground States in an Optical Lattice

    Get PDF
    Non-standard Bose-Hubbard models can exhibit rich ground state phase diagrams, even when considering the one-dimensional limit. Using a self-consistent Gutzwiller diagonalisation approach, we study the mean-field ground state properties of a long-range interacting atomic gas in a one-dimensional optical lattice. We first confirm that the inclusion of long-range two-body interactions to the standard Bose-Hubbard model introduces density wave and supersolid phases. However, the introduction of pair and density-dependent tunnelling can result in new phases with two-site periodic density, single-particle transport and two-body transport order parameters. These staggered phases are potentially a mean-field signature of the known novel twisted superfluids found via a DMRG approach [PRA \textbf{94}, 011603(R) (2016)]. We also observe other unconventional phases, which are characterised by sign staggered order parameters between adjacent lattice sites.Comment: 11 pages, 7 figures, comments welcom

    Critical states and anomalous mobility edges in two-dimensional diagonal quasicrystals

    Get PDF
    We study the single-particle properties of two-dimensional quasicrystals where the underlying geometry of the tight-binding lattice is crystalline but the on-site potential is quasicrystalline. We will focus on the two-dimensional (2D) generalized Aubry-André model which has a varying form to its quasiperiodic potential, through a deformation parameter and varied irrational periods of cosine terms, which allows a continuous family of on-site quasicrystalline models to be studied. We show that the 2D generalized Aubry-André model exhibits many single-particle mobility edges which we confirm for finite systems and supports critical states across large parameter regions. Critical states are neither fully localized nor extended. We observe that diagonal quasicrystalline models can support many energy intervals of critical states in the spectrum while stabilizing both localized and extended states in other energy intervals; we refer to these as anomalous mobility edges. We show that critical states are present independent of system size through a scaling analysis of the inverse participation ratio and that they are present in spectra that also contain extended and localized states, confirming that at least one anomalous mobility edge is present. Due to this, these models exhibit anomalous diffusion of initially localized states across the majority of parameter regions, including deep in the normally localized regime. The presence of critical states in large parameter regimes and throughout the spectrum will have consequences for the many-body properties of quasicrystals, including the formation of the Bose glass and the potential to host a many-body localized phase

    Exact edge, bulk and bound states of finite topological systems

    Full text link
    Finite topologically non-trivial systems are often characterised by the presence of bound states at their physical edges. These topological edge modes can be distinguished from usual Shockley waves energetically, as their energies remain finite and in-gap. On a clean 1D or reducible 2D model, in either the commensurate or semi-infinite case, the edge modes can be obtained analytically, as shown in [PRL 71, 3697 (1993)] and [PRA 89, 023619 (2014)]. We put forward a method for obtaining the spectrum and wave functions of topological edge modes for arbitrary finite lattices, including the incommensurate case. A small number of parameters are easily determined numerically, with the form of the eigenstates remaining fully analytical. We also obtain the bulk modes in the finite system analytically and their eigenenergies, which lie within the infinite-size limit continuum. Our method is general and can be easily applied to obtain the properties of non-topological models and/or extended to include impurities. As an example, we consider the case of an impurity located next to one edge of a 1D system, equivalent to a softened boundary in a separable 2D model. We show that a localised impurity can have a drastic effect on the edge modes of the system. Using the periodic Harper and Hofstadter models to illustrate our method, we find that, on increasing the impurity strength, edge states can enter or exit the continuum, and a trivial Shockley state bound to the impurity may appear. The fate of the topological edge modes in the presence of impurities can be addressed by quenching the impurity strength. We find that at certain critical impurity strengths, the transition probability for a particle initially prepared in an edge mode to decay into the bulk exhibits discontinuities that mark the entry and exit points of edge modes from and into the bulk spectrum.Comment: 13 pages, 6 figure

    Linked and knotted synthetic magnetic fields

    Get PDF
    We show that the realisation of synthetic magnetic fields via light-matter coupling in the Lambda-scheme implements a natural geometrical construction of magnetic fields, namely as the pullback of the area element of the sphere to Euclidean space via certain maps. For suitable maps, this construction generates linked and knotted magnetic fields, and the synthetic realisation amounts to the identification of the map with the ratio of two Rabi frequencies which represent the coupling of the internal energy levels of an ultracold atom. We consider examples of maps which can be physically realised in terms of Rabi frequencies and which lead to linked and knotted synthetic magnetic fields acting on the neutral atomic gas. We also show that the ground state of the Bose-Einstein condensate may inherit topological properties of the synthetic gauge field, with linked and knotted vortex lines appearing in some cases.Comment: 8 pages, 4 figures, supplementary videos attached. Comments welcom

    Topological models in rotationally symmetric quasicrystals

    Get PDF
    We investigate the physics of quasicrystalline models in the presence of a uniform magnetic field, focusing on the presence and construction of topological states. This is done by using the Hofstadter model but with the sites and couplings denoted by the vertex model of the quasicrystal, giving the Hofstadter vertex model. We specifically consider two-dimensional quasicrystals made from tilings of two tiles with incommensurate areas, focusing on the five-fold Penrose and the eight-fold Ammann-Beenker tilings. This introduces two competing scales; the uniform magnetic field and the incommensurate scale of the cells of the tiling. Due to these competing scales the periodicity of the Hofstadter butterfly is destroyed. We observe the presence of topological edge states on the boundary of the system via the Bott index that exhibit two way transport along the edge. For the eight-fold tiling we also observe internal edge-like states with non-zero Bott index, which exhibit two way transport along this internal edge. The presence of these internal edge states is a new characteristic of quasicrystalline models in magnetic fields. We then move on to considering interacting systems. This is challenging, in part because exact diagonalization on a few tens of sites is not expected to be enough to accurately capture the physics of the quasicrystalline system, and in part because it is not clear how to construct topological flatbands having a large number of states. We show that these problems can be circumvented by building the models analytically, and in this way we construct models with Laughlin type fractional quantum Hall ground states.Comment: 13 pages, 16 figures, published PR

    Synthetic mean-field interactions in photonic lattices

    Get PDF
    Photonic lattices are usually considered to be limited by their lack of methods to include interactions. We address this issue by introducing mean-field interactions through optical components which are external to the photonic lattice. The proposed technique to realise mean-field interacting photonic lattices relies on a Suzuki-Trotter decomposition of the unitary evolution for the full Hamiltonian. The technique realises the dynamics in an analogous way to that of a step-wise numerical implementation of quantum dynamics, in the spirit of digital quantum simulation. It is a very versatile technique which allows for the emulation of interactions that do not only depend on inter-particle separations or do not decay with particle separation. We detail the proposed experimental scheme and consider two examples of interacting phenomena, self-trapping and the decay of Bloch oscillations, that are observable with the proposed technique.Comment: 7 pages, 5 figures, comments welcom
    corecore