205 research outputs found

    In vivo monitoring of fetoplacental Vegfr2 gene activity in a murine pregnancy model using a Vegfr2-luc reporter gene and bioluminescent imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular endothelial growth factor receptor-2 (VEGFR2) plays a pivotal role in angiogenesis by eliciting vascular endothelial cell growth when bound to VEGF, a powerful pro-angiogenic ligand. While Vegf and Vegfr2 are expressed throughout gestation, the latter third of gestation in mice is characterized by a marked increase in fetoplacental angiogenesis. Thus, the objective of this study was to determine the feasibility of monitoring fetoplacental Vegfr2 gene activity non-invasively using a Vegfr2-luc reporter transgenic mouse and bioluminescent imaging.</p> <p>Methods</p> <p>Imaging parameters were optimized using two wild-type (WT) females, bearing Vegfr2-luc fetuses. Then, seven WT females, bred to Vegfr2-luc males, were imaged from gestational day (GD) 12 to 18 to determine the usefulness of the Vegfr2-luc mouse as a model for studying fetoplacental Vegfr2 activity during pregnancy. Semi-quantitative RT-PCR of Vegfr2 was also performed on whole fetoplacental units during this time. Additionally, resultant neonates were imaged at postnatal day (PND) 7, 14 and 21 to monitor Vegfr2 activity during post-natal development.</p> <p>Results</p> <p>Fetoplacental Vegfr2 gene activity was detected as light emissions beginning on GD 12 of gestation and increased throughout the imaging period (P < 0.05), and this paralleled the Vegfr2 mRNA data obtained from RT-PCR analysis. A decline in fetoplacental light emissions was associated with a poor pregnancy outcome in one pregnancy, indicating that this approach has potential use for studies monitoring pregnancy well being. Additionally, neonatal Vegfr2 activity was detected at PND 7, 14 and 21 but declined with time (P < 0.0001).</p> <p>Conclusions</p> <p><it>In utero </it>fetoplacental Vegfr2 gene activity was monitored longitudinally in a quantitative manner using a luciferase reporter gene and bioluminescent imaging during the latter third of gestation. This study demonstrates the feasibility of using the Vegfr2-luc mouse to monitor late gestation fetoplacental angiogenic activity under normal and experimental conditions. Additionally, neonatal Vegfr2 gene activity was monitored for three weeks postpartum, allowing continuous monitoring of Vegfr2 activity during the latter third of gestation and postnatal development within the same animals.</p

    Registration of ‘LCS Compass’ Wheat

    Get PDF
    ‘LCS Compass’ (Reg. No. CV-1149, PI 675458), a hard red winter (HRW) wheat (Triticum aestivum L.), was developed and tested as VA10HRW-13 and co-released by the Virginia Agricultural Experiment Station and Limagrain Cereal Seeds, LLC, in 2015. LCS Compass was derived from the cross ‘Vision 20’ /‘Stanof’ using a modified bulk breeding method. LCS Compass is a widely adapted, high-yielding, awned, semidwarf (Rht1) HRW wheat with early to medium maturity and resistance or moderate resistance to diseases prevalent in the mid-Atlantic and Great Plains regions of the United States. In the 2013 Uniform Bread Wheat Trial conducted over 18 locations in eastern states, LCS Compass produced an average grain yield of 4609 kg ha−1 that was similar to ‘Vision 30’ (4697 kg ha−1). In the northern Great Plains, the average grain yield of LCS Compass (4015 kg ha−1) over 44 locations in 2013 was similar to ‘Jerry’ (4013 kg ha−1). In the South Dakota crop zone 3 variety test, LCS Compass had a 3-yr (2015–2017) yield average of 5575 kg ha−1 and was one of highest-yielding cultivars among the 19 cultivars tested over the 3-yr period. LCS Compass has good end-use quality in both the eastern and Great Plains regions of the United States

    A population-specific material model for sagittal craniosynostosis to predict surgical shape outcomes

    Get PDF
    Sagittal craniosynostosis consists of premature fusion (ossification) of the sagittal suture during infancy, resulting in head deformity and brain growth restriction. Spring-assisted cranioplasty (SAC) entails skull incisions to free the fused suture and insertion of two springs (metallic distractors) to promote cranial reshaping. Although safe and effective, SAC outcomes remain uncertain. We aimed hereby to obtain and validate a skull material model for SAC outcome prediction. Computed tomography data relative to 18 patients were processed to simulate surgical cuts and spring location. A rescaling model for age matching was created using retrospective data and validated. Design of experiments was used to assess the effect of different material property parameters on the model output. Subsequent material optimization—using retrospective clinical spring measurements—was performed for nine patients. A population-derived material model was obtained and applied to the whole population. Results showed that bone Young’s modulus and relaxation modulus had the largest effect on the model predictions: the use of the population-derived material model had a negligible effect on improving the prediction of on-table opening while significantly improved the prediction of spring kinematics at follow-up. The model was validated using on-table 3D scans for nine patients: the predicted head shape approximated within 2 mm the 3D scan model in 80% of the surface points, in 8 out of 9 patients. The accuracy and reliability of the developed computational model of SAC were increased using population data: this tool is now ready for prospective clinical application

    Effects of DNA supercoiling on chromatin architecture

    Get PDF
    Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo

    Granularity and superconductor-insulator transition in electrochemically anodized Al films

    No full text
    We report the use of an electrochemical anodization process to fabricate ultrathin granular Al films at room temperature. These films display a superconductor-insulator transition of the same character as those found in quench-condensed granular films. The granularity of the films and the unusually narrow distribution of the grain sizes are shown by scanning force microscopy

    Identification of fungal oxaloacetate hydrolyase within the isocitrate lyase/PEP mutase enzyme superfamily using a sequence marker-based method

    No full text
    Aspergillus niger produces oxalic acid through the hydrolysis of oxaloacetate, catalyzed by the cytoplasmic enzyme oxaloacetate acetylhydrolase (OAH). The A. niger genome encodes four additional open reading frames with strong sequence similarity to OAH yet only the oahA gene encodes OAH activity. OAH and OAH-like proteins form subclass of the isocitrate lyase/PEP mutase enzyme superfamily, which is ubiquitous present filamentous fungi. Analysis of function-specific residues using a superfamily-based approach revealed an active site serine as a possible sequence marker for OAH activity. We propose that presence of this serine in family members correlates with presence of OAH activity whereas its absence correlates with absence of OAH. This hypothesis was tested by carrying out a serine mutagenesis study with the OAH from the fungal oxalic acid producer Botrytis cinerea and the OAH active plant petal death protein as test system
    • …
    corecore