218 research outputs found

    Burkholderia pseudomallei and melioidosis

    Get PDF
    Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities

    Deciphering the human antibody response against Burkholderia pseudomallei during melioidosis using a comprehensive immunoproteome approach

    Get PDF
    IntroductionThe environmental bacterium Burkholderia pseudomallei causes the often fatal and massively underreported infectious disease melioidosis. Antigens inducing protective immunity in experimental models have recently been identified and serodiagnostic tools have been improved. However, further elucidation of the antigenic repertoire of B. pseudomallei during human infection for diagnostic and vaccine purposes is required. The adaptation of B. pseudomallei to very different habitats is reflected by a huge genome and a selective transcriptional response to a variety of conditions. We, therefore, hypothesized that exposure of B. pseudomallei to culture conditions mimicking habitats encountered in the human host might unravel novel antigens that are recognized by melioidosis patients.Methods and resultsIn this study, B. pseudomallei was exposed to various stress and growth conditions, including anaerobiosis, acid stress, oxidative stress, iron starvation and osmotic stress. Immunogenic proteins were identified by probing two-dimensional Western blots of B. pseudomallei intracellular and extracellular protein extracts with sera from melioidosis patients and controls and subsequent MALDI-TOF MS. Among B. pseudomallei specific immunogenic signals, 90 % (55/61) of extracellular immunogenic proteins were identified by acid, osmotic or oxidative stress. A total of 84 % (44/52) of intracellular antigens originated from the stationary growth phase, acidic, oxidative and anaerobic conditions. The majority of the extracellular and intracellular protein antigens were identified in only one of the various stress conditions. Sixty-three immunoreactive proteins and an additional 38 candidates from a literature screening were heterologously expressed and subjected to dot blot analysis using melioidosis sera and controls. Our experiments confirmed melioidosis-specific signals in 58 of our immunoproteome candidates. These include 15 antigens with average signal ratios (melioidosis:controls) greater than 10 and another 26 with average ratios greater than 5, including new promising serodiagnostic candidates with a very high signal-to-noise ratio.ConclusionOur study shows that a comprehensive B. pseudomallei immunoproteomics approach, using conditions which are likely to be encountered during infection, can identify novel antibody targets previously unrecognized in human melioidosis

    Quantitative PCR Evaluation of Cellular Immune Responses in Kenyan Children Vaccinated with a Candidate Malaria Vaccine

    Get PDF
    BACKGROUND: The T-cell mediated immune response plays a central role in the control of malaria after natural infection or vaccination. There is increasing evidence that T-cell responses are heterogeneous and that both the quality of the immune response and the balance between pro-inflammatory and regulatory T-cells determines the outcome of an infection. As Malaria parasites have been shown to induce immunosuppressive responses to the parasite and non-related antigens this study examined T-cell mediated pro-inflammatory and regulatory immune responses induced by malaria vaccination in children in an endemic area to determine if these responses were associated with vaccine immunogenicity. METHODS: Using real-time RT- PCR we profiled the expression of a panel of key markers of immunogenecity at different time points after vaccination with two viral vector vaccines expressing the malaria TRAP antigen (FP9-TRAP and MVA-TRAP) or following rabies vaccination as a control. PRINCIPAL FINDINGS: The vaccine induced modest levels of IFN-gamma mRNA one week after vaccination. There was also an increase in FoxP3 mRNA expression in both TRAP stimulated and media stimulated cells in the FFM ME-TRAP vaccine group; however, this may have been driven by natural exposure to parasite rather than by vaccination. CONCLUSION: Quantitative PCR is a useful method for evaluating vaccine induced cell mediated immune responses in frozen PBMC from children in a malaria endemic country. Future studies should seek to use vaccine vectors that increase the magnitude and quality of the IFN-gamma immune response in naturally exposed populations and should monitor the induction of a regulatory T cell response

    T cell immune memory after covid-19 and vaccination

    Get PDF
    The T cell memory response is a crucial component of adaptive immunity responsible for limiting or preventing viral reinfection. T cell memory after infection with the SARS-CoV-2 virus or vaccination is broad, and spans multiple viral proteins and epitopes, about 20 in each individual. So far the T cell memory response is long lasting and provides a high level of cross reactivity and hence resistance to viral escape by variants of the SARS-CoV-2 virus, such as the omicron variant. All current vaccine regimens tested produce robust T cell memory responses, and heterologous regimens will probably enhance protective responses through increased breadth. T cell memory could have a major role in protecting against severe covid-19 disease through rapid viral clearance and early presentation of epitopes, and the presence of cross reactive T cells might enhance this protection. T cell memory is likely to provide ongoing protection against admission to hospital and death, and the development of a pan-coronovirus vaccine might future proof against new pandemic strains

    Serum From Melioidosis Survivors Diminished Intracellular Burkholderia pseudomallei Growth in Macrophages: A Brief Research Report.

    Get PDF
    Melioidosis is a neglected tropical disease with high mortality rate. It is caused by the Gram-negative, CDC category B select agent Burkholderia pseudomallei (B. ps) that is intrinsically resistant to first-line antibiotics. An antibody-based vaccine is likely to be the most effective control measure. Previous studies have demonstrated significant mechanistic roles of antibodies in protection against death in animal models, but data from human melioidosis is scarce. Herein, we used in-vitro antibody-dependent cellular phagocytosis and growth inhibition assays to assess the mechanism of protective antibodies in patients with acute melioidosis. We found that serum from patients who survived the disease enable more live B. ps to be engulfed by THP-1 derived macrophages (median 1.7 × 103 CFU/ml, IQR 1.1 × 103-2.5 × 103 CFU/ml) than serum from patients who did not survive (median 1.2 × 103 CFU/ml, IQR 0.7 × 103-1.8 × 103, p = 0.02). In addition, the intracellular growth rate of B. ps pre-opsonized with serum from survivors (median 7.89, IQR 5.58-10.85) was diminished when compared with those with serum from non-survivors (median 10.88, IQR 5.42-14.88, p = 0.04). However, the difference of intracellular bacterial growth rate failed to reach statistical significance when using purified IgG antibodies (p = 0.09). These results provide new insights into a mechanistic role of serum in protection against death in human melioidosis for antibody-based vaccine development

    Consensus on the development of vaccines against naturally acquired melioidosis.

    Get PDF
    Several candidates for a vaccine against Burkholderia pseudomallei, the causal bacterium of melioidosis, have been developed, and a rational approach is now needed to select and advance candidates for testing in relevant nonhuman primate models and in human clinical trials. Development of such a vaccine was the topic of a meeting in the United Kingdom in March 2014 attended by international candidate vaccine developers, researchers, and government health officials. The focus of the meeting was advancement of vaccines for prevention of natural infection, rather than for protection from the organism's known potential for use as a biological weapon. A direct comparison of candidate vaccines in well-characterized mouse models was proposed. Knowledge gaps requiring further research were identified. Recommendations were made to accelerate the development of an effective vaccine against melioidosis

    Co-evolutionary Signals Identify Burkholderia pseudomallei Survival Strategies in a Hostile Environment

    Get PDF
    The soil bacterium Burkholderia pseudomallei is the causative agent of melioidosis and a significant cause of human morbidity and mortality in many tropical and subtropical countries. The species notoriously survives harsh environmental conditions but the genetic architecture for these adaptations remains unclear. Here we employed a powerful combination of genome-wide epistasis and co-selection studies (2,011 genomes), condition-wide transcriptome analyses (82 diverse conditions), and a gene knockout assay to uncover signals of "co-selection"-that is a combination of genetic markers that have been repeatedly selected together through B. pseudomallei evolution. These enabled us to identify 13,061 mutation pairs under co-selection in distinct genes and noncoding RNA. Genes under co-selection displayed marked expression correlation when B. pseudomallei was subjected to physical stress conditions, highlighting the conditions as one of the major evolutionary driving forces for this bacterium. We identified a putative adhesin (BPSL1661) as a hub of co-selection signals, experimentally confirmed a BPSL1661 role under nutrient deprivation, and explored the functional basis of co-selection gene network surrounding BPSL1661 in facilitating the bacterial survival under nutrient depletion. Our findings suggest that nutrient-limited conditions have been the common selection pressure acting on this species, and allelic variation of BPSL1661 may have promoted B. pseudomallei survival during harsh environmental conditions by facilitating bacterial adherence to different surfaces, cells, or living hosts.Peer reviewe

    Generation of SARS-CoV-2 escape mutations by monoclonal antibody therapy

    Get PDF
    COVID-19 patients at risk of severe disease may be treated with neutralising monoclonal antibodies (mAbs). To minimise virus escape from neutralisation these are administered as combinations e.g. casirivimab+imdevimab or, for antibodies targeting relatively conserved regions, individually e.g. sotrovimab. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to detect emerging drug resistance in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the antibody epitopes and for casirivimab+imdevimab multiple mutations are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum

    Estimating the subnational prevalence of antimicrobial resistant Salmonella enterica serovars Typhi and Paratyphi A infections in 75 endemic countries, 1990–2019: a modelling study

    Get PDF
    Background Enteric fever, a systemic infection caused by Salmonella enterica serovars Typhi and Paratyphi A, remains a major cause of morbidity and mortality in low-income and middle-income countries. Enteric fever is preventable through the provision of clean water and adequate sanitation and can be successfully treated with antibiotics. However, high levels of antimicrobial resistance (AMR) compromise the effectiveness of treatment. We provide estimates of the prevalence of AMR S Typhi and S Paratyphi A in 75 endemic countries, including 30 locations without data. Methods We used a Bayesian spatiotemporal modelling framework to estimate the percentage of multidrug resistance (MDR), fluoroquinolone non-susceptibility (FQNS), and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections for 1403 administrative level one districts in 75 endemic countries from 1990 to 2019. We incorporated data from a comprehensive systematic review, public health surveillance networks, and large multicountry studies on enteric fever. Estimates of the prevalence of AMR and the number of AMR infections (based on enteric fever incidence estimates by the Global Burden of Diseases study) were produced at the country, super-region, and total endemic area level for each year of the study. Findings We collated data from 601 sources, comprising 184 225 isolates of S Typhi and S Paratyphi A, covering 45 countries over 30 years. We identified a decline of MDR S Typhi in south Asia and southeast Asia, whereas in sub-Saharan Africa, the overall prevalence increased from 6·0% (95% uncertainty interval 4·3–8·0) in 1990 to 72·7% (67·7–77·3) in 2019. Starting from low levels in 1990, the prevalence of FQNS S Typhi increased rapidly, reaching 95·2% (91·4–97·7) in south Asia in 2019. This corresponded to 2·5 million (1·5–3·8) MDR S Typhi infections and 7·4 million (4·7–11·3) FQNS S Typhi infections in endemic countries in 2019. The prevalence of third-generation cephalosporin-resistant S Typhi remained low across the whole endemic area over the study period, except for Pakistan where prevalence of third-generation cephalosporin resistance in S Typhi reached 61·0% (58·0–63·8) in 2019. For S Paratyphi A, we estimated low prevalence of MDR and third-generation cephalosporin resistance in all endemic countries, but a drastic increase of FQNS, which reached 95·0% (93·7–96·1; 3·5 million [2·2–5·6] infections) in 2019. Interpretation This study provides a comprehensive and detailed analysis of the prevalence of MDR, FQNS, and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections in endemic countries, spanning the last 30 years. Our analysis highlights the increasing levels of AMR in this preventable infection and serves as a resource to guide urgently needed public health interventions, such as improvements in water, sanitation, and hygiene and typhoid fever vaccination campaigns. Funding Fleming Fund, UK Department of Health and Social Care; Wellcome Trust; and Bill and Melinda Gates Foundation

    Human Immune Responses to Melioidosis and Cross-Reactivity to Low-Virulence Burkholderia Species, Thailand1.

    Get PDF
    Melioidosis is a neglected tropical disease with an estimated annual mortality rate of 89,000 in 45 countries across tropical regions. The causative agent is Burkholderia pseudomallei, a gram-negative soil-dwelling bacterium. In Thailand, B. pseudomallei can be found across multiple regions, along with the low-virulence B. thailandensis and the recently discovered B. thailandensis variant (BTCV), which expresses B. pseudomallei-like capsular polysaccharide. Comprehensive studies of human immune responses to B. thailandensis variants and cross-reactivity to B. pseudomallei are not complete. We evaluated human immune responses to B. pseudomallei, B. thailandensis, and BTCV in melioidosis patients and healthy persons in B. pseudomallei-endemic areas using a range of humoral and cellular immune assays. We found immune cross-reactivity to be strong for both humoral and cellular immunity among B. pseudomallei, B. thailandensis, and BTCV. Our findings suggest that environmental exposure to low-virulence strains may build cellular immunity to B. pseudomallei
    • …
    corecore