19 research outputs found

    Unbinding forces and energies between a siRNA molecule and a dendrimer measured by force spectroscopy

    Get PDF
    We have measured the intermolecular forces between small interference RNA (siRNA) and polyamidoamine dendrimers at the single molecular level. A single molecule force spectroscopy approach has been developed to measure the unbinding forces and energies between a siRNA molecule and polyamidoamine dendrimers deposited on a mica surface in a buffer solution. We report three types of unbinding events which are characterized by forces and free unbinding energies, respectively, of 28 pN, 0.709 eV; 38 pN, 0.722 eV; and 50 pN, 0.724 eV. These events reflect different possible electrostatic interactions between the positive charges of one or two dendrimers and the negatively charged phosphate groups of a single siRNA. We have evidence of a high binding affinity of siRNA towards polyamidoamine dendrimers that leads to a 45% probability of measuring specific unbinding eventsThis work was funded by the European Research Council ERC-AdG-340177 (3DNanoMech) grant to RG and by the Spanish Ministry of Economy (MINECO) through grants CSD2010-00024, MAT2013-44858-R to RG and BFU2011-30161- C02-01 and BFU2014-59009-P to VC.Peer reviewe

    Multiparametric Atomic Force Microscopy Identifies Multiple Structural and Physical Heterogeneities on the Surface of Trypanosoma brucei

    No full text
    A unique feature of the African trypanosome Trypanosoma brucei is the presence of an outer layer made of densely packed variable surface glycoproteins (VSGs), which enables the cells to survive in the bloodstream. Although the VSG coat is critical to pathogenesis, how exactly the glycoproteins are organized at the nanoscale is poorly understood. Here, we show that multiparametric atomic force microscopy is a powerful nanoimaging tool for the structural and mechanical characterization of trypanosomes, in a label-free manner and in buffer solution. Directly correlated images of the structure and elasticity of trypanosomes enable us to identify multiple nanoscale mechanical heterogeneities on the cell surface. On a ∼250 nm scale, regions of softer (Young’s modulus ∼50 kPa) and stiffer (∼100 kPa) elasticity alternate, revealing variations of the VSG coat and underlying structures. Our nanoimaging experiments show that the T. brucei cell surface is more heterogeneous than previously anticipated and offer promising prospects for the design of trypanocidal drugs targeting cell surface components

    Altered Glycan Expression on Breast Cancer Cells Facilitates Infection by T3 Seroptype Oncolytic Reovirus

    No full text
    [Image: see text] Breast cancer is the most common cancer in women. Although current therapies have increased survival rates for some breast cancer types, other aggressive invasive breast cancers remain difficult to treat. As the onset of breast cancer is often associated with the appearance of extracellular markers, these could be used to better target therapeutic agents. Here, we demonstrated by nanobiophysical approaches that overexpression of α-sialylated glycans in breast cancer provides an opportunity to combat cancer cells with oncolytic reoviruses. Notably, a correlation between cellular glycan expression and the mechanical properties of reovirus attachment and infection is observed in a serotype-dependent manner. Furthermore, we enhance the infectivity of reoviruses in malignant cells by the coinjection of α-sialylated glycans. In conclusion, this study supports both the use of reoviruses as an oncolytic agent in nanomedicine and the role of α-sialylated glycans as adjuvants in oncolysis, offering new perspective in oncolytic cancer therapy

    Probing PIEZO1 Localization upon Activation Using High-Resolution Atomic Force and Confocal Microscopy

    No full text
    PIEZO1 ion channels are activated by mechanical stimuli, triggering intracellular chemical signals. Recent structural studies suggest that plasma membrane tension or local curvature changes modulate PIEZO1 channel gating and activation. However, whether PIEZO1 localization is governed by tension gradients or long-range mechanical perturbations across the cells is still unclear. Here, we probe the nanoscale localization of PIEZO1 on red blood cells (RBCs) at high resolution (∼30 nm), and we report for the first time the existence of submicrometric PIEZO1 clusters in native conditions. Upon interaction with Yoda1, an allosteric modulator, PIEZO1 clusters increase in abundance in regions of higher membrane tension and lower curvature. We further show that PIEZO1 ion channels interact with the spectrin cytoskeleton in both resting and activated states. Our results point toward a strong interplay between plasma membrane tension gradients, curvature, and cytoskeleton association of PIEZO1

    Piezo1 Regulation Involves Lipid Domains and the Cytoskeleton and Is Favored by the Stomatocyte–Discocyte–Echinocyte Transformation

    No full text
    Piezo1 is a mechanosensitive ion channel required for various biological processes, but its regulation remains poorly understood. Here, we used erythrocytes to address this question since they display Piezo1 clusters, a strong and dynamic cytoskeleton and three types of submicrometric lipid domains, respectively enriched in cholesterol, GM1 ganglioside/cholesterol and sphingomyelin/cholesterol. We revealed that Piezo1 clusters were present in both the rim and the dimple erythrocyte regions. Upon Piezo1 chemical activation by Yoda1, the Piezo1 cluster proportion mainly increased in the dimple area. This increase was accompanied by Ca2+ influx and a rise in echinocytes, in GM1/cholesterol-enriched domains in the dimple and in cholesterol-enriched domains in the rim. Conversely, the effects of Piezo1 activation were abrogated upon membrane cholesterol depletion. Furthermore, upon Piezo1-independent Ca2+ influx, the above changes were not observed. In healthy donors with a high echinocyte proportion, Ca2+ influx, lipid domains and Piezo1 fluorescence were high even at resting state, whereas the cytoskeleton membrane occupancy was lower. Accordingly, upon decreases in cytoskeleton membrane occupancy and stiffness in erythrocytes from patients with hereditary spherocytosis, Piezo1 fluorescence was increased. Altogether, we showed that Piezo1 was differentially controlled by lipid domains and the cytoskeleton and was favored by the stomatocyte–discocyte–echinocyte transformation.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Nanophysical Mapping of Inflammasome Activation by Nanoparticles via Specific Cell Surface Recognition Events

    No full text
    Silica nanoparticles (SiNP) trigger a range of innate immune responses in relevant essential organs, such as the liver and the lungs. Inflammatory reactions, including NLRP3 inflammasome activation, have been linked to particulate materials; however, the molecular mechanisms and key actors remain elusive. Although many receptors, including several scavenger receptors, were suggested to participate in SiNP cellular uptake, mechanistic evidence of their role on innate immunity is lacking. Here we present an atomic force microscopy-based approach to physico-mechanically map the specific interaction occurring between nanoparticles and scavenger receptor A1 (SRA1) in vitro on living lung epithelial cells. We find that SiNP recognition by SRA1 on human macrophages plays a key role in mediating NLRP3 inflammasome activation, and we identify cellular mechanical changes as clear indicators of inflammasome activation in human macrophages, greatly advancing our knowledge on the interplay among nanomaterials and innate immunity
    corecore