219 research outputs found

    Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the mechanisms that control species genetic structure has always been a major objective in evolutionary studies. The association between genetic structure and species attributes has received special attention. As species attributes are highly taxonomically constrained, phylogenetically controlled methods are necessary to infer causal relationships. In plants, a previous study controlling for phylogenetic signal has demonstrated that Wright's <it>F</it><sub>ST</sub>, a measure of genetic differentiation among populations, is best predicted by the mating system (outcrossing, mixed-mating or selfing) and that plant traits such as perenniality and growth form have only an indirect influence on <it>F</it><sub>ST </sub>via their association with the mating system. The objective of this study is to further outline the determinants of plant genetic structure by distinguishing the effects of mating system on gene flow and on genetic drift. The association of biparental inbreeding and inbreeding depression with population genetic structure, mating system and plant traits are also investigated.</p> <p>Results</p> <p>Based on data from 263 plant species for which estimates of <it>F</it><sub>ST</sub>, inbreeding (<it>F</it><sub>IS</sub>) and outcrossing rate (<it>t</it><sub>m</sub>) are available, we confirm that mating system is the main influencing factor of <it>F</it><sub>ST</sub>. Moreover, using an alternative measure of <it>F</it><sub>ST </sub>unaffected by the impact of inbreeding on effective population size, we show that the influence of <it>t</it><sub>m </sub>on <it>F</it><sub>ST </sub>is due to its impact on gene flow (reduced pollen flow under selfing) and on genetic drift (higher drift under selfing due to inbreeding). Plant traits, in particular perenniality, influence <it>F</it><sub>ST </sub>mostly via their effect on the mating system but also via their association with the magnitude of selection against inbred individuals: the mean inbreeding depression increases from short-lived herbaceous to long-lived herbaceous and then to woody species. The influence of perenniality on mating system does not seem to be related to differences in stature, as proposed earlier, but rather to differences in generation time.</p> <p>Conclusion</p> <p>Plant traits correlated with generation time affect both inbreeding depression and mating system. These in turn modify genetic drift and gene flow and ultimately genetic structure.</p

    Fine-scale spatial genetic structure in the frankincense tree Boswellia papyrifera (Del.) Hochst. and implications for conservation

    Get PDF
    The fine-scale genetic structure and how it varies between generations depends on the spatial scale of gene dispersal and other fundamental aspects of species’ biology, such as the mating system. Such knowledge is crucial for the design of genetic conservation strategies. This is particularly relevant for species that are increasingly fragmented such as Boswellia papyrifera. This species occurs in dry tropical forests from Ethiopia, Eritrea and Sudan and is an important source of frankincense, a highly valued aromatic resin obtained from the bark of the tree. This study assessed the genetic diversity and fine-scale spatial genetic structure (FSGS) of two cohorts (adults and seedlings) from two populations (Guba-Arenja and Kurmuk) in Western Ethiopia and inferred intra-population gene dispersal in the species, using microsatellite markers. The expected heterozygosity (HE) was 0.664–0.724. The spatial analyses based on kinship coefficient (Fij) revealed a significant positive genetic correlation up to a distance of 130 m. Spatial genetic structure was relatively weak (Sp = 0.002–0.014) indicating that gene dispersal is extensive within the populations. Based on the FSGS patterns found, we estimate indirectly gene dispersal distances of 103 and 124 m for the two populations studied. The high heterozygosity, the low fixation index and the low Sp values found in this study are consistent with outcrossing as the (predominant) mating system in B. papyrifera. We suggest that seed collection for ex situ conservation and reforestation programmes of B. papyrifera should use trees separated by distances of at least 100 m but preferably 150 m to limit genetic relatedness among seeds from different trees

    Microsatellite development for the genus Guibourtia (Fabaceae, Caesalpinioideae) reveals diploid and polyploid species

    Get PDF
    Premise of the study: Nuclear microsatellites (nSSRs) were designed for Guibourtia tessmannii (Fabaceae, Caesalpinioideae), a highly exploited African timber tree, to study population genetic structure and gene flow. Methods and Results: We developed 16 polymorphic nSSRs from a genomic library tested in three populations of G. tessmannii and two populations of G. coleosperma. These nSSRs display three to 14 alleles per locus (mean 8.94) in G. tessmannii. Cross-amplification tests in nine congeneric species demonstrated that the genus Guibourtia contains diploid and polyploid species. Flow cytometry results combined with nSSR profiles suggest that G. tessmannii is octoploid. Conclusions: nSSRs revealed that African Guibourtia species include both diploid and polyploid species. These markers will provide information on the mating system, patterns of gene flow, and genetic structure of African Guibourtia species

    Management of Parkia biglobosa in the field of farmers in selected sites in Burkina Faso

    Get PDF
    Parkia biglobosa is ranked as one of the most important agroforestry multipurpose tree species in Sahelo-Sudanian zone. The National Tree Seed Center (CNSF) of Burkina Faso has been involved in a breeding programme of this species for many years and has already conducted several research activities (eg. germplasm collection, provenance trials establishment, selection of the best promising trees for propagation). To better conserve and guide the breeding program, it is important to understand how farmers perceive and manage the species in their fields. A survey was conducted in two villages in southern Burkina Faso to describe the farmers' practices with regard to encouraging regeneration of tree species in their fields, with a special emphasis on Parkia biglobosa. The survey targeted 150 people categorised by gender, ethnic group and status of residence. The results show that Parkia biglobosa is the most appreciated indigenous species across ethnic and gender groups. Its maintenance in the landscape is favoured by both the protection of spontaneous regeneration by farmers when they clear the land for agriculture, and by active planting. The species is valued both for its commercial use and human consumption in the household. The survey indicated a significant difference in the practices undertaken by women and men to safeguard regeneration. With regard to the preferred traits of Parkia biglobosa individuals, also some differences between genders emerge. The level of appreciation shown by farmers for Parkia biglobosa and the indications about what traits are most preferred are useful guidance in the identification of optimal sources of reproductive material to be made available to farmers through different channels. The results also indicated the need to couple the analyses of farmers' perception of trait variation among individuals with a systematic morphological characterisation of the various morphological types identified

    Perspectives for sustainable Prunus africana production and trade

    Get PDF
    This brief documents current knowledge about pygeum (Prunus africana). It aims to inform decision makers in governments in producing and consumer countries, international and civil society organisations and researchers, about sustainable (international) trade and governance of the species

    Bridge Decomposition of Restriction Measures

    Full text link
    Motivated by Kesten's bridge decomposition for two-dimensional self-avoiding walks in the upper half plane, we show that the conjectured scaling limit of the half-plane SAW, the SLE(8/3) process, also has an appropriately defined bridge decomposition. This continuum decomposition turns out to entirely be a consequence of the restriction property of SLE(8/3), and as a result can be generalized to the wider class of restriction measures. Specifically we show that the restriction hulls with index less than one can be decomposed into a Poisson Point Process of irreducible bridges in a way that is similar to Ito's excursion decomposition of a Brownian motion according to its zeros.Comment: 24 pages, 2 figures. Final version incorporates minor revisions suggested by the referee, to appear in Jour. Stat. Phy

    A numerical adaptation of SAW identities from the honeycomb to other 2D lattices

    Full text link
    Recently, Duminil-Copin and Smirnov proved a long-standing conjecture by Nienhuis that the connective constant of self-avoiding walks on the honeycomb lattice is 2+2.\sqrt{2+\sqrt{2}}. A key identity used in that proof depends on the existence of a parafermionic observable for self-avoiding walks on the honeycomb lattice. Despite the absence of a corresponding observable for SAW on the square and triangular lattices, we show that in the limit of large lattices, some of the consequences observed on the honeycomb lattice persist on other lattices. This permits the accurate estimation, though not an exact evaluation, of certain critical amplitudes, as well as critical points, for these lattices. For the honeycomb lattice an exact amplitude for loops is proved.Comment: 21 pages, 7 figures. Changes in v2: Improved numerical analysis, giving greater precision. Explanation of why we observe what we do. Extra reference
    • …
    corecore