113 research outputs found
Elektroencephalographie in der Intensivstation. Electroencephalography in the Intensive Care Unit
Kullback-Leibler and Renormalized Entropy: Applications to EEGs of Epilepsy Patients
Recently, renormalized entropy was proposed as a novel measure of relative
entropy (P. Saparin et al., Chaos, Solitons & Fractals 4, 1907 (1994)) and
applied to several physiological time sequences, including EEGs of patients
with epilepsy. We show here that this measure is just a modified
Kullback-Leibler (K-L) relative entropy, and it gives similar numerical results
to the standard K-L entropy. The latter better distinguishes frequency contents
of e.g. seizure and background EEGs than renormalized entropy. We thus propose
that renormalized entropy might not be as useful as claimed by its proponents.
In passing we also make some critical remarks about the implementation of these
methods.Comment: 15 pages, 4 Postscript figures. Submitted to Phys. Rev. E, 199
The Metalloprotease Meprinβ Processes E-Cadherin and Weakens Intercellular Adhesion
BACKGROUND: Meprin (EC 3.4.24.18), an astacin-like metalloprotease, is expressed in the epithelium of the intestine and kidney tubules and has been related to cancer, but the mechanistic links are unknown. METHODOLOGY/PRINCIPAL FINDINGS: We used MDCK and Caco-2 cells stably transfected with meprin alpha and or meprin beta to establish models of renal and intestinal epithelial cells expressing this protease at physiological levels. In both models E-cadherin was cleaved, producing a cell-associated 97-kDa E-cadherin fragment, which was enhanced upon activation of the meprin zymogen and reduced in the presence of a meprin inhibitor. The cleavage site was localized in the extracellular domain adjacent to the plasma membrane. In vitro assays with purified components showed that the 97-kDa fragment was specifically generated by meprin beta, but not by ADAM-10 or MMP-7. Concomitantly with E-cadherin cleavage and degradation of the E-cadherin cytoplasmic tail, the plaque proteins beta-catenin and plakoglobin were processed by an intracellular protease, whereas alpha-catenin, which does not bind directly to E-cadherin, remained intact. Using confocal microscopy, we observed a partial colocalization of meprin beta and E-cadherin at lateral membranes of incompletely polarized cells at preconfluent or early confluent stages. Meprin beta-expressing cells displayed a reduced strength of cell-cell contacts and a significantly lower tendency to form multicellular aggregates. CONCLUSIONS/SIGNIFICANCE: By identifying E-cadherin as a substrate for meprin beta in a cellular context, this study reveals a novel biological role of this protease in epithelial cells. Our results suggest a crucial role for meprin beta in the control of adhesiveness via cleavage of E-cadherin with potential implications in a wide range of biological processes including epithelial barrier function and cancer progression
Effects of caffeine on the electrophysiological, cognitive and motor responses of the central nervous system
Elektroencephalographie in der Intensivstation. Electroencephalography in the Intensive Care Unit
THE EFFECT OF CLONAZEPAM (Ro 5-4023) IN THE SYNDROME OF INFANTILE SPASMS WITH HYPSARRHYTHMIA AND IN PETIT MAL VARIANT OR LENNOX SYNDROME
- …
