78 research outputs found

    Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems

    Get PDF
    The search for lower energy consumption desalination systems has been driving research in the past decade towards the investigation of osmotically driven membrane processes, such as forward osmosis (FO) or osmotic distillation (OD). Despite similarities with reverse osmosis (RO) membranes, thin film composite (TFC) for FO membranes require careful design to reduce salt concentration polarization formation within the large pores composing the supporting layer. An investigation of a novel, highly stable, robust support made solely of carbon nanotubes (CNTs), which could find applications in both RO and FO was undertaken. TFC membranes were fabricated by interfacially polymerizing for the first time a dense poly(amide) (PA) layer on self-supporting bucky-papers (BPs) made of hydroxyl-functionalized entangled CNTs. These hydrophilic supports exhibited low contact angle with water (90%), making it a promising material when compared with poly(sulfone) (PSf), the traditional polymer used to fabricate TFC membrane supports in RO. In addition, the impact of the support hydrophilicity on the stability of the interfacially polymerized film and on water adsorption was investigated by oxygen-plasma treating various potential support materials, exhibiting similar geometrical properties. The morphology and salt diffusion of both CNT BP and PSf supports were investigated, and the novel BP–PA composite membranes were found to be superior to commercially available TFC membranes

    Electro-catalytic biodiesel production from canola oil in methanolic and ethanolic solutions with low-cost stainless steel and hybrid ion-exchange resin grafted electrodes

    Full text link
    Biodiesel is a growing alternative to petroleum fuels and is produced by the catalyzed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be among the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or cosolvent. An inexpensive stainless steel (SS) electrode and a hybrid SS electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain SS electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel

    Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation – a review

    Get PDF
    Given that surface water is the primary supply of drinking water worldwide, the presence of natural organic matter (NOM) in surface water presents difficulties for water treatment facilities. During the disinfection phase of the drinking water treatment process, NOM aids in the creation of toxic disinfection by-products (DBPs). This problem can be effectively solved using the nanofiltration (NF) membrane method, however NOM can significantly foul NF membranes, degrading separation performance and membrane integrity, necessitating the development of fouling-resistant membranes. This review offers a thorough analysis of the removal of NOM by NF along with insights into the operation, mechanisms, fouling, and its controlling variables. In light of engineering materials with distinctive features, the potential of surface-engineered NF membranes is here critically assessed for the impact on the membrane surface, separation, and antifouling qualities. Case studies on surface-engineered NF membranes are critically evaluated, and properties-to-performance connections are established, as well as challenges, trends, and predictions for the field's future. The effect of alteration on surface properties, interactions with solutes and foulants, and applications in water treatment are all examined in detail. Engineered NF membranes containing zwitterionic polymers have the greatest potential to improve membrane permeance, selectivity, stability, and antifouling performance. To support commercial applications, however, difficulties related to material production, modification techniques, and long-term stability must be solved promptly. Fouling resistant NF membrane development would be critical not only for the water treatment industry, but also for a wide range of developing applications in gas and liquid separations

    Charge tunable thin-film composite membranes by gamma-ray triggered surface polymerization

    Get PDF
    Thin-film composite poly(amide) (PA) membranes have greatly diversified water supplies and food products. However, users would benefit from a control of the electrostatic interactions between the liquid and the net surface charge interface in order to benefit wider application. The ionic selectivity of the 100 nm PA semi-permeable layer is significantly affected by the pH of the solution. In this work, for the first time, a convenient route is presented to configure the surface charge of PA membranes by gamma ray induced surface grafting. This rapid and up-scalable method offers a versatile route for surface grafting by adjusting the irradiation total dose and the monomer concentration. Specifically, thin coatings obtained at low irradiation doses between 1 and 10 kGy and at low monomer concentration of 1 v/v% in methanol/water (1:1) solutions, dramatically altered the net surface charge of the pristine membranes from-25 mV to +45 mV, whilst the isoelectric point of the materials shifted from pH 3 to pH 7. This modification resulted in an improved water flux by over 55%, from 45.9 to up 70 L.m -2 .h -1 , whilst NaCl rejection was found to drop by only 1% compared to pristine membranes

    An in-situ small angle x ray scattering analysis of nanopore formation during thermally induced chemical dealloying of brass thin foils

    Full text link
    The development of non-noble nano-porous metal materials is hindered by surface oxidation reactions and from the difficulty to generate long range order pore arrays. Dealloying is a promising route to generate such materials by selective chemical etching of metal alloy materials. This process can generate nano-metal materials with superior plasmonic, catalytic and adsorptive surface properties. Here, the impact of properties of the etching solution on the dealloying process to generate nano-pores across thin film alloys was investigated by in-situ SAXS dealloying experiments. Single phase CuZn alloys were used as model materials to evaluate the influence of the solution temperature on the pore formation kinetics. This novel analysis allowed to visualize the change in surface properties of the materials over time, including their surface area as well as their pore and ligament sizes. The dealloying kinetics at the very early stage of the process were found to be critical to both stable pore formation and stabilization. SAXS in-situ data were correlated to the morphological properties of the materials obtained from ex-situ samples by Rutherford back scattering and scanning electron microscopy

    A critical assessment of technical advances in pharmaceutical removal from wastewater – A critical review

    Get PDF
    Use of pharmaceutical products has seen a tremendous increase in the recent decades. It has been observed that more than thirty million tons of pharmaceuticals are consumed worldwide. The used pharmaceutical products are not completely metabolized in human and animal body. Therefore, they are excreted to the environment and remain there as persistent organic chemicals. These compounds emerge as toxic contaminants in water and affect the human metabolism directly or indirectly. This literature review is an endeavour to understand the origin, applications and current advancement in the removal of pharmaceuticals from the environment. It discusses about the pharmaceuticals used in medical applications such diagnosis and disease treatment. In addition, it discusses about the recent approaches applied in pharmaceutical removal including microbial fuel cells, biofiltration, and bio nanotechnology approaches. Moreover, the challenges associated with pharmaceutical removal are presented considering biological and environmental factors. The review suggest the potential recommendations on pharmaceutical removal.The corresponding author Prof. Vinay Kumar is thankful to all the co-authors for their collaborative efforts in writing this paper. This work was supported by Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India.Peer reviewe

    Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes

    No full text
    Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported
    • …
    corecore