5 research outputs found

    Live barriers and associated organic amendments mitigate land degradation and improve crop productivity in hillside agricultural systems of the Ecuadorian Andes

    Get PDF
    Land degradation caused by erosion and nutrient depletion in the Andes poses serious existential threats to small-scale farming. Although the potential of hedgerows to decrease water erosion is well recognised, their potential dual-use as a source of organic amendments to supplement farmer inputs is much less studied. The objective of this investigation was therefore to explore locally developed options for hedgerows that address these twin challenges. Experimental plots were installed to assess water erosion control by hedgerows and the effect of organic amendments harvested from the hedgerows on soil productivity, soil moisture, and soil fertility over the course of 2 years and three crop cycles (two of barley and one of rye). The experiment was conducted in two sites within the community at distinct elevations and associated biophysical contexts. At each site, four treatments were established, comparing a control treatment versus three types of hedgerows: (a) Andean alder, (b) canary grass strips, and (c) mixed canary grass and Andean alder. Results demonstrated that hedgerows and associated organic inputs comprised canary grass, and mixed canary grass and Andean alder reduced water erosion by 50–60% and increased biomass production by up to 1.1 Mg ha−1 and grain yield by up to 0.5 Mg ha−1. We conclude that although hedgerows are unlikely to produce sufficient quantities of organic resources to satisfy all nutrient input requirements, their potential to decrease erosion and supplement existing organic matter inputs indicates that they should be strongly considered as an option for improved agricultural management within this and similar resource constrained contexts.</p

    Inter-community and on-farm asymmetric organic matter allocation patterns drive soil fertility gradients in a rural Andean landscape

    Get PDF
    Soil fertility in agricultural landscapes is driven by complex interactions between natural and anthropogenic processes, with organic matter (OM) inputs playing a critical role. Asymmetric allocation patterns of these resources among communities and within individual farms can lead to soil fertility gradients. However, the drivers and consequences of such patterns in different socioecological contexts remains poorly documented and understood. The objective of this study was to address this gap by assessing asymmetric OM allocation patterns and the associated consequences for soil fertility management in three indigenous communities located in the Central Ecuadorian Andes. We found that both distance from homestead and perception of fertility were associated with asymmetric OM allocation patterns to fields as well as with soil fertility gradients within farms. For example, soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), and exchangeable potassium (K) all decreased with distance from the homestead, while SOC, total N, and available P were positively correlated with a farmer's perception of soil fertility. We note that these fertility gradients remained even in the case of increased farm-level OM inputs. Overall OM allocation patterns differed significantly among communities and were associated with significant differences in soil fertility, with the highest levels of available P and exchangeable K found in the community with the highest OM inputs. The results of this study indicate the importance of asymmetric OM allocation patterns encountered at different scales, both within farms and among neighboring communities, in rural Andean landscapes and their significant interactions with soil fertility gradients.</p

    Regression Analysis to Identify Factors Associated with Urinary Iodine Concentration at the Sub-National Level in India, Ghana, and Senegal

    No full text
    Single and multiple variable regression analyses were conducted using data from stratified, cluster sample design, iodine surveys in India, Ghana, and Senegal to identify factors associated with urinary iodine concentration (UIC) among women of reproductive age (WRA) at the national and sub-national level. Subjects were survey household respondents, typically WRA. For all three countries, UIC was significantly different (p &lt; 0.05) by household salt iodine category. Other significant differences were by strata and by household vulnerability to poverty in India and Ghana. In multiple variable regression analysis, UIC was significantly associated with strata and household salt iodine category in India and Ghana (p &lt; 0.001). Estimated UIC was 1.6 (95% confidence intervals (CI) 1.3, 2.0) times higher (India) and 1.4 (95% CI 1.2, 1.6) times higher (Ghana) among WRA from households using adequately iodised salt than among WRA from households using non-iodised salt. Other significant associations with UIC were found in India, with having heard of iodine deficiency (1.2 times higher; CI 1.1, 1.3; p &lt; 0.001) and having improved dietary diversity (1.1 times higher, CI 1.0, 1.2; p = 0.015); and in Ghana, with the level of tomato paste consumption the previous week (p = 0.029) (UIC for highest consumption level was 1.2 times lowest level; CI 1.1, 1.4). No significant associations were found in Senegal. Sub-national data on iodine status are required to assess equity of access to optimal iodine intake and to develop strategic responses as needed

    Agroecosystem patterns and land management co-develop through environment, management, and land-use interactions

    Get PDF
    A poor understanding of the interactions between biophysical and social elements within rural mountainous landscapes can lead to suboptimal management and recommendations. The objective of this study was to contribute to more contextualized natural resource management in a rural landscape in the Ecuadorian Andes by (1) identifying biophysical patterns in soil properties, biodiversity, and C stocks that emerge from natural landscape pedogenic processes, resulting from elevation-induced climate gradients, erosion and soil textural patterns, and (2) assessing farm management and land-use effects on and their interactions with these biophysical patterns. Our findings revealed that the climate and soil texture gradients within the landscape led to an exponential increase in SOC with elevation moderated by slope gradient, indicating significant erosion processes. Farmers adapted their farm management according to the observed environmental patterns creating three distinct management zones. Differentiated agricultural management in these zones and asymmetrical distribution of land-uses in turn were observed to significantly influence soil and agroecosystem properties. For example, available P was found to be significantly higher in the upper and middle agricultural management zones (24.0 and 28.7 mg/kg, respectively), where agricultural inputs were higher compared to the lower agricultural management zone (8.9 mg/kg, P < 0.001). Mixed hedgerows, on the other hand, displayed significantly higher Shannon index scores for ground vegetation (1.8) and soil macrofauna (2.0) compared to agricultural land-uses (1.0 and 1.7). Our results provide important insights into how agroecosystem patterns and land management co-developed through complex environment, management, and land-use interactions.</p

    Regression Analysis to Identify Factors Associated with Household Salt Iodine Content at the Sub-National Level in Bangladesh, India, Ghana and Senegal

    No full text
    Regression analyses of data from stratified, cluster sample, household iodine surveys in Bangladesh, India, Ghana and Senegal were conducted to identify factors associated with household access to adequately iodised salt. For all countries, in single variable analyses, household salt iodine was significantly different (p &lt; 0.05) between strata (geographic areas with representative data, defined by survey design), and significantly higher (p &lt; 0.05) among households: with better living standard scores, where the respondent knew about iodised salt and/or looked for iodised salt at purchase, using salt bought in a sealed package, or using refined grain salt. Other country-level associations were also found. Multiple variable analyses showed a significant association between salt iodine and strata (p &lt; 0.001) in India, Ghana and Senegal and that salt grain type was significantly associated with estimated iodine content in all countries (p &lt; 0.001). Salt iodine relative to the reference (coarse salt) ranged from 1.3 (95% CI 1.2, 1.5) times higher for fine salt in Senegal to 3.6 (95% CI 2.6, 4.9) times higher for washed and 6.5 (95% CI 4.9, 8.8) times higher for refined salt in India. Sub-national data are required to monitor equity of access to adequately iodised salt. Improving household access to refined iodised salt in sealed packaging, would improve iodine intake from household salt in all four countries in this analysis, particularly in areas where there is significant small-scale salt production
    corecore