7 research outputs found

    Tumor Resident Memory T Cells: New Players in Immune Surveillance and Therapy.

    Get PDF
    Tissue resident memory T cells (Trm) are a subset of memory T cells mainly described in inflammation and infection settings. Their location in peripheral tissues, such as lungs, gut, or skin, makes them the earliest T cell population to respond upon antigen recognition or under inflammatory conditions. The study of Trm cells in the field of cancer, and particularly in cancer immunotherapy, has recently gained considerable momentum. Different reports have shown that the vaccination route is critical to promote Trm generation in preclinical cancer models. Cancer vaccines administered directly at the mucosa, frequently result in enhanced Trm formation in mucosal cancers compared to vaccinations via intramuscular or subcutaneous routes. Moreover, the intratumoral presence of T cells expressing the integrin CD103 has been reported to strongly correlate with a favorable prognosis for cancer patients. In spite of recent progress, the full spectrum of Trm anti-tumoral functions still needs to be fully established, particularly in cancer patients, in different clinical contexts. In this mini-review we focus on the recent vaccination strategies aimed at generating Trm cells, as well as evidence supporting their association with patient survival in different cancer types. We believe that collectively, this information provides a strong rationale to target Trm for cancer immunotherapy

    CART cells are prone to Fas- and DR5-mediated cell death.

    Get PDF
    Adoptive transfer of T cells transduced with Chimeric Antigen Receptors (CAR) are now FDA-approved for the treatment of B-cell malignancies. Yet, the functionality of the endogenous TCR in CART cells has not been fully assessed. Here, we demonstrate that CART cells progressively upregulate Fas, FasL, DR5 and TRAIL, which result in their programmed cell death, independently of antigen-mediated TCR or CAR activation. CART cell apoptosis occurs even when the CAR contains a single (co-)activatory domain such as CD3ζ, CD28 or 4-1BB. Importantly, the dominant role of the Fas and DR5 pathways in CART cell apoptosis is demonstrated by the significant rescue of CART cells upon in vivo blockade by combined Fas-Fc and DR5-Fc recombinant proteins. These observations are of crucial importance for the long-term persistence of CART cells and for the development of new applications including the combined TCR and CAR activation against solid tumors

    Correction to: CART cells are prone to Fas- and DR5-mediated cell death.

    Get PDF
    After publication of this article [1], it was noticed that 3 authors were missed from the author list

    PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions

    Get PDF
    Group 2 innate lymphoid cells (ILC2s) play a critical role in protection against helminths and in diverse inflammatory diseases by responding to soluble factors such as the alarmin IL-33, that is often overexpressed in cancer. Nonetheless, regulatory factors that dictate ILC2 functions remain poorly studied. Here, we show that peroxisome proliferator-activated receptor gamma (PPARγ) is selectively expressed in ILC2s in humans and in mice, acting as a central functional regulator. Pharmacologic inhibition or genetic deletion of PPARγ in ILC2s significantly impair IL-33-induced Type-2 cytokine production and mitochondrial fitness. Further, PPARγ blockade in ILC2s disrupts their pro-tumoral effect induced by IL-33-secreting cancer cells. Lastly, genetic ablation of PPARγ in ILC2s significantly suppresses tumor growth in vivo. Our findings highlight a crucial role for PPARγ in supporting the IL-33 dependent pro-tumorigenic role of ILC2s and suggest that PPARγ can be considered as a druggable pathway in ILC2s to inhibit their effector functions. Hence, PPARγ targeting might be exploited in cancer immunotherapy and in other ILC2-driven mediated disorders, such as asthma and allergy

    Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity.

    Get PDF
    Memory CD8 T cells can provide long-term protection against tumors, which depends on their enhanced proliferative capacity, self-renewal and unique metabolic rewiring to sustain cellular fitness. Specifically, memory CD8 T cells engage oxidative phosphorylation and fatty acid oxidation to fulfill their metabolic demands. In contrast, tumor-infiltrating lymphocytes (TILs) display severe metabolic defects, which may underlie their functional decline. Here, we show that overexpression of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis (MB), favors CD8 T cell central memory formation rather than resident memory generation. PGC-1α-overexpressing CD8 T cells persist and mediate more robust recall responses to bacterial infection or peptide vaccination. Importantly, CD8 T cells with enhanced PGC-1α expression provide stronger antitumor immunity in a mouse melanoma model. Moreover, TILs overexpressing PGC-1α maintain higher mitochondrial activity and improved expansion when rechallenged in a tumor-free host. Altogether, our findings indicate that enforcing mitochondrial biogenesis promotes CD8 T cell memory formation, metabolic fitness, and antitumor immunity in vivo

    Navigating CAR-T cells through the solid-tumour microenvironment

    No full text
    The adoptive transfer of T cells that are engineered to express chimeric antigen receptors (CARs) has shown remarkable success in treating B cell malignancies but only limited efficacy against other cancer types, especially solid tumours. Compared with haematological diseases, solid tumours present a unique set of challenges, including a lack of robustly expressed, tumour-exclusive antigen targets as well as highly immunosuppressive and metabolically challenging tumour microenvironments that limit treatment safety and efficacy. Here, we review protein- and cell-engineering strategies that seek to overcome these obstacles and produce next-generation T cells with enhanced tumour specificity and sustained effector function for the treatment of solid malignancies
    corecore