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Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Épalinges, Switzerland

Tissue resident memory T cells (Trm) are a subset of memory T cells mainly described

in inflammation and infection settings. Their location in peripheral tissues, such as

lungs, gut, or skin, makes them the earliest T cell population to respond upon antigen

recognition or under inflammatory conditions. The study of Trm cells in the field of

cancer, and particularly in cancer immunotherapy, has recently gained considerable

momentum. Different reports have shown that the vaccination route is critical to promote

Trm generation in preclinical cancer models. Cancer vaccines administered directly at

the mucosa, frequently result in enhanced Trm formation in mucosal cancers compared

to vaccinations via intramuscular or subcutaneous routes. Moreover, the intratumoral

presence of T cells expressing the integrin CD103 has been reported to strongly correlate

with a favorable prognosis for cancer patients. In spite of recent progress, the full

spectrum of Trm anti-tumoral functions still needs to be fully established, particularly in

cancer patients, in different clinical contexts. In this mini-review we focus on the recent

vaccination strategies aimed at generating Trm cells, as well as evidence supporting their

association with patient survival in different cancer types. We believe that collectively, this

information provides a strong rationale to target Trm for cancer immunotherapy.
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INTRODUCTION

Tumor-infiltrating lymphocytes (TILs) frequently remain tolerant or display an exhausted
phenotype favored by the tumor microenvironment (1–3). Thus, two of the main challenges of
current immunotherapy against cancer are generating specific T cells that may effectively target
tumor cells and ensuring the induction of long-term anti-tumor protective immune responses.
Therapeutic strategies to promote the development of immunological memory have for the most
part focused on circulating memory T cells, such as central memory (Tcm) or effector memory
(Tem) but have failed so far to consider resident memory cells (Trm).

Trm cells are a long-lasting population frequently characterized by the expression of CD103,
CD69, and CD49a surface markers and by the absence of the lymph node homing receptors
CD62L and CCR7. The differentiation toward a residency memory program is known to be
regulated by TGFβ and IL-15 cytokines, which promote the expression of the transcription
factors Hobbit and Blimp1. The upregulation of these molecules induces the silencing of other
transcription factors such as KLF2 and TCF1 and proteins involved in tissue egress such as
S1PR1 (4). Trm cells are mainly localized in peripheral lymphoid and non-lymphoid tissues such
as lung, skin, gastrointestinal and genitourinary tracts (5). Their permanence in these tissues is
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mainly mediated by the expression of the integrins CD103
and CD49a that bind E-cadherin and collagen respectively. The
homing properties of Trm cells can vary depending on the tissue
and the chemokine receptor expression patterns. The presence of
CCR5 and CXCR3, for instance, is essential for the recruitment
of CD8+ Trm cells to the lungs in cancer and infection (6, 7).

Trm cells have been broadly studied in infection and
inflammation settings (8), where they are considered as the first
immune population to become activated even in the absence of
in situ antigen recognition (9). Their role in immune surveillance
of cancer remains unclear, although there is an increase in the
number of publications associating the presence of Trm cells in
tumor areas with a favorable outcome. Of note, the importance
of this subset of lymphocytes has been described in anti-tumor
immunity of skin and mucosal tumors (10, 11). Hence, the
development of immunotherapeutic strategies favoring Trm cell
generation and function could be critical not only in controlling
tumor growth but also, and foremost, in preventing tumor
recurrences.

In thismini-reviewwewill cover twomain aspects of Trm cells
in cancer: the importance of the vaccination route to promote
Trm cells against tumor antigens and the evidence substantiating
an association of their occurrence to patient survival.

VACCINATION ROUTES THAT PROMOTE
TRM CELLS IN CANCER

The precise procedures for the generation ad libitum of tissue
resident memory remain still unknown. A recent study found
the existence of a common clonal origin for central and resident
memory T cells upon immunizing the skin of mice and humans
with different components (protein antigen, hapten and non-
replicative virus) (12).

Crosspriming dendritic cells seem to be critical for the
generation of resident memory in the tissues. In a preclinical
infection model, the priming strength and the durability of
antigen presentation were reported to play an important role in
Trm generation, in an IL-12, IL-15, and CD24 dependent manner
(13).Moreover, the absence of crosspriming dendritic cells results
in a preferential reduction of Trm cells over circulating memory
T cells in both infection and cancer settings (13, 14).

The imprinting of homing properties of tissue resident T
cells is also dependent on the priming event. It has been
shown that dendritic cells (DCs) can induce different arrays
of chemokine receptors and adhesion molecules, such as
integrins or selectin-ligands, in CD8T cells depending on the
sites where they uptake the antigens (15). In a glioblastoma
preclinical model, the injection of tumor cells by distinct routes
(intraperitoneal, intracranial and subcutaneous) was shown to
promote different patterns of integrins on specific T lymphocytes
isolated from the respective tumor-draining lymph nodes (15).
These results suggest a mechanistic explanation of the impact of
the immunization route in the generation of Trm cells (16–23).

Despite the fact that many cancers develop at mucosal
sites such as the lungs, oral and genitovaginal cavities or the
gastrointestinal tube, most of the preclinical cancer vaccines

have been administered subcutaneously or intramuscularly,
thus without specific targeting of mucosal sites. This may
be relevant in advanced diseases with multiple visceral and
cutaneous metastases. Indeed, subcutaneous immunization with
DCs pulsed with a human melanoma peptide was found
to be sufficient to reject subcutaneous melanomas but not
lung metastases. However, systemic intravenous immunization
prevented lung metastasis in a mechanism involving CD8T cells
that were retained in the spleen (24).

Recent studies carried out by different groups have assessed
vaccination at mucosal sites. By using an orthotopic head and
neck tumor model expressing the E7 antigen from HPV (TC-
1 cell line), it was demonstrated that intranasal vaccination
prevents the tumor growth in the oral cavity and in the
lungs. Such an effect was not observed with vaccination by
the intramuscular route (25). This anti-tumor outcome was
mainly dependent on the presence of E7-tetramer positive
CD8T cells expressing mucosal integrins (CD49a and CD103)
that were not only found in tumors but also in mediastinal
and cervical lymph nodes (25). In a model of cervicovaginal
cancer, the generation of CD8T cells with a resident phenotype
was promoted upon intravaginal viral vector-based vaccination,
which also boosted circulating tumor-specific T cells. T cells
expressing CD103 and CD69 were shown to produce high levels
of IFNγ and TNFα at the tumor site (16, 26). In line with
this, the combination of intravaginal HPV-based vaccination
administered upon intramuscular E7-expressing DNA vaccine,
enhanced tumor-specific CD8T cells in the mucosa of an
HPV-cervicovaginal cancer model. The α4β7 integrin expressed
by CD8T lymphocytes was found to be the main integrin
responsible for the migration of these cells to the genital mucosa.
Clear evidence shows that DCs present at the mucosal site
induce the upregulation of α4β7 integrin on CD8T cells, favoring
homing to the tumor (27). By injecting the same tumor cell
line in the bladder, another group showed promising anti-tumor
effects in a therapeutic intravaginal vaccine. Although in this
model the subcutaneous route showed a better outcome, it was
proven that the tumor growth control of intravaginal route was
due to presence of tumor-specific CD8T cells in the bladder
mucosa. The fact that these CD8T cells are detectable at later time
points upon vaccination indicates that intravaginal vaccination
can give rise to the generation of resident memory T cells
(28).

However, intravaginal vaccination was not able to prevent
growth of tumors in a transplantable vaginal cancer generated
by intravaginal instillation of TC-1 cells expressing the E7
antigen (29). Control of the tumor growth was achieved with
subcutaneous and intranasal routes in detriment of intravaginal
vaccine administration. The clear discrepancy between these
results and the previously mentioned related to the intravaginal
vaccination route in cervicovaginal cancer might be explained
by the type of vaccines employed in each case. In this
study mice were injected with a vaccine based on the E7-
peptide combined with different adjuvants, while previous
studies focused on viral based-vector vaccines containing E7
antigen. Furthermore, the targeting of different subsets of DCs
should be taken into account. Given the fact that crosspriming
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dendritic cells are necessary for the generation of Trm cells,
a vaccine that potentially targets these specific DCs may
induce more Trm and thus, a better outcome in cancer
patients.

In fact, the idea of targeting DCs to promote the induction
of CD103 on primed CD8T cells was further explored in a
humanized breast cancer model. In this study, DCs that were
reprogrammed via dectin-1 favored the generation of a resident
phenotype on CD8T cells in a TGFβ-dependent manner (30).
It was also shown that TLR agonists such as poly(I:C; TLR3) or
CpG-ODN (TLR9) induced systemic but not resident memory
T cells. In contrast, in a genital tumor model, the intravaginal
injection of TLR agonists in combination with an E7 peptide-
based vaccine, was reported to promote the recruitment of
E7-specific T cells into the tumor. Although the increased
recruitment of T cells was proposed to be responsible for tumor
regression, the generation of Trm cells by this vaccine was not
clearly addressed in this study (31).

Even though Trm cells are broadly present in the skin,
their generation in this tissue has not been deeply studied in
a skin cancer setting. Up to now, two recent reports describe
how a prophylactic vaccination through skin scarification
enhanced Trm generation in skin, preventing subcutaneous, and
intradermal-injected tumor growth (13, 32).

CD103+ EXPRESSION ON TILS IS
ASSOCIATED WITH PATIENT SURVIVAL

The integrin αE(CD103)β7 selective for E-cadherin identifies
tumor antigen-reactive TILs with more potent effector functions
than the CD103 negative TIL subset. Indeed, CD103+ TILs
displayed enhanced killing capacity (33) and CD103+ T
cells infiltrating glioma had an improved ability to produce
granzyme B (34). Upon binding to E-cadherin, CD103+ T cells
undergo cytotoxic granule polarization, and degranulation
concomitantly to TCR engagement (33, 35). Moreover,
the expression of CD103 has been associated with patient
survival in diverse cancer types: melanoma (36), non-small
cell lung carcinoma (NSCLC) (37, 38), bladder cancer (39),
endometrial cancer (EC) (40), breast cancer (41), cervical cancer
(42) and high-grade serous ovarian cancer (HGSC) (43–46)
(Table 1).

At the antigen specific T cell level, a recent study from a
phase I clinical trial enrolling melanoma patients vaccinated
subcutaneously with a melanoma antigen (Melan-A), analyzed
the homing receptors characterizing Melan-A-specific CD8T
cells. The presence of circulating melanoma-specific T cells
harboring P-Selectin binding and Very late antigen (VLA-1)
correlated with improved patient survival. Moreover, VLA-1+
CD8T cells were strongly enriched in melanoma metastases
(lung, skin and brain) and displayed a Trm phenotype expressing
the CD103 and CD69 surface markers (47). Another recent
report also focused onmelanoma patients, naïve of any treatment
or undergoing αPD-1 therapy. They demonstrated an improved
survival in 50% of patients with a high number of CD103+ TILs
cell compared to 20% in those with lower numbers (36).

A correlation between a high CD103+ TIL density and
patient survival was also shown in early stage NSCLC patients.
CD103 + CD8 TILs from these tumor biopsies displayed Trm
phenotype and expressed high levels of the inhibitory receptors
PD-1 and TIM-3 (37). Along the same lines, in NSCLC patients,
it was revealed that highly infiltrated tumors (TILshigh) were
enriched for Trm cells and the density of CD103+ CD8 TILs was
associated with a favorable outcome (38).

In bladder urothelial cell carcinoma, the density of CD103+
TILs correlated with survival and was inversely linked to
the tumor volume (39). Similarly, patients diagnosed with
endometrial cancer or cervical cancer had improved survival
when a high infiltration of CD103+ TILs was detected (40, 42).

In breast cancer, especially in the basal-like tumor subtype,
the patients had improved survival when the tumor was enriched
with CD103+ CD8 TILs (41).

The association between CD103+ cells and survival was
also established by several studies in high-grade serous ovarian
cancer (HGSC) (43–46). It was shown that CD103+ TIL
infiltration (46) and the presence of CD103+ or CD3+
intraepithelial lymphocytes (43) correlated with better
survival in HGSC patients. Moreover, the stratification of
patients according to CD103 or CD3 counts in the tumor,
highlighted striking differences according to overall survival:
the CD3highCD103high group had a 5-years survival rate at
90%, the CD3lowCD103high at 63% and the CD3lowCD103low

at 0%, thus demonstrating the crucial presence of TILs and the
potential power of the CD103 marker to predict patient outcome
(43).

CD103+ TIL detection is associated with an improved
survival in various mucosal tumor models. However, a study
performed with colorectal cancer (CRC) patients did not find
any difference in survival comparing intraepithelial CD103+ cell
density in the whole cohort. In addition, analysis of high CD103+
density in KRAS WT CRC patients, a subgroup of the cohort,
defined a group with unfavorable outcome (48).

Taken together, the presence of high levels of CD103+ TILs
is associated with improved patient survival in the majority
of the cancer types described here, albeit with the possible
exception CRC. This prominent exception remains to be
confirmed, including the distinction of CRC subtype. Moreover,
the possible mechanistic basis for this unique disconnect may
offer further insights into the role of Trm cells in different
tumor microenvironments. Of note, Tregs may also express
CD103 (49), thus calling for a complete subset analysis of
TILs. In this regard, novel high content immunohistochemical
technologies may help in providing high resolution TIL
analyses.

TRM CELLS AS TARGETS FOR CANCER
IMMUNOTHERAPY

CD8+ CD103+ TILs have been shown to express high levels
of PD-1 in various cancers: melanoma (36), lung cancer
(37, 38), endometrial adenocarcinoma (40) and HGSC (44,
46). CD8+ CD103+ PD-1+ TILs displayed potent cytokine
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TABLE 1 | Association of patient survival with CD103+ expression on tumor infiltrating lymphocytes (TILs) in different cancer types.

Tumor CD103+ TILs

correlate with survival

Treatment Trm cells phenotype Cancer grade No. of

patients

References

Glioma N.A. (–) CD103+, Granzyme B+ (–) 6–7 (34)

Melanoma N.A. Vaccination CD103+, CD69+, VLA-1+ III/IV 18 (47)

Yes +/–αPD-1 CD103+, CD69+,

PD-1high, Granzyme B+,

KLRG1low

III 44 (36)

NSCLC Yes Surgery CD103+, CD69+, PD-1high Early stage 101 (37)

Yes (–) CD103+, CD69+, CD49a+ Early stage 36 and 689 (38)

Bladder Yes Surgery CD103+ Ta-T4 302 (39)

Endometrial Yes Surgery CD103+, PD-1+ FIGO I-IV 305 (40)

Cervix Yes Surgery and/or

radio(chemo)

CD103+ FIGO IA2-IVA 304 (42)

Breast Yes Surgery and radiation

or chemotherapy

CD103+ FIGO I-III 424 (41)

HGSC Yes Surgery and

chemotherapy

CD103+, PD-1+ FIGO I-III 210 (46)

Yes Surgery and

chemotherapy

CD103+ FIGO II-III 135 (43)

Yes Surgery and

chemotherapy

CD103+, PD-1+ FIGO IIb 186 (44)

Yes Surgery and

chemotherapy

CD103+ FIGO I-IV 135 (45)

Colorectal No Surgery CD103+ T1-T4 239 (48)

N.A., not analyzed; (–), not known.

production (IFNγ and TNFα) after PMA/ionomycin stimulation,
thus representing an interesting target for immunotherapy
(50). Indeed, it was demonstrated that αPD-1 treatment led
to CD103+ TIL expansion in the majority of melanoma
patients showing improved survival, confirming that the use of
checkpoint blockade may effectively boost this T cell population
leading to favorable patient outcomes (36).

Interestingly, the expression of other inhibitory receptors
varies in CD8+ CD103+ TILs within different cancer types.
For instance, in melanoma CD103+ CD69+ TILs were PD-1+

and LAG-3+ but negative for CTLA-4 (36); in NSCLC CD103+
TILs expressed PD-1 and TIM-3 but with negligible CTLA-4

expression (37) and inHGSCCD103+TILs did not express TIM-
3, CTLA-4 or LAG-3 (50). The different expression profiles of

inhibitory receptors on CD103+ TILs warrant further detailed

characterization that may serve to guide the selection of the
specific immune checkpoint blockade administration, such as

monotherapies or combinations.
It was demonstrated that human Influenza-specific Trm cells

possess strong proliferative potential after CFSE labeling (51). In
addition, secondary effector cells derived from CD8+ CD103+

CD69+ Trm cells displayed enhanced polyfunctionality, since

IFNγ, TNFα, and granzyme B production was improved
compared to effectors differentiated from CD103+ CD69- or

CD103-CD69+ subsets (51). Therefore, it would be of great
interest to sort, re-expand, and adoptively transfer (ACT) this T
cell population in patients. However, when ACT of Trm cells was
attempted in a mouse model, it was met with poor success (52).
This failure may be explained in part by poor homing capacities

of Trm cells. An approach to counteract the homing intrinsic
limitations of Trm cells could be the transfer of this population
directly at the required mucosal site. On the other hand, the use
of ACT of Tcm cells in mice efficiently led to the generation of a
Trm cell population after infection or tumor challenge (13). Thus,
the potential of ACT with Tcm cells due to their plasticity could
be exploited to favor Trm cell differentiation.

CONCLUDING REMARKS

The growing interest in CD8+ Trm cells is illustrated in the
number of recent studies aimed at understanding the optimal
way to promote their formation in preclinical cancer models.
According to reports detailed above, the vaccination route is
crucial to boost Trm cell formation at the required site. In
several models, the intramucosal vaccination route demonstrated
an enhanced potential to generate Trm cells, compared to the
conventional intramuscular or subcutaneous routes.

It has also been demonstrated that CD8+ Trm cells
may be key players in successful cancer immunotherapy,
since their presence in tumor areas is frequently associated
with better survival in the majority of cancer types. Due
to their localization, mostly at mucosal sites, and surface
expression of several inhibitory receptors, such as PD-1,
CD103+ TILs represent an appealing target for immunotherapy.
Nevertheless, it remains unclear whether the adoptive transfer
of these cells would succeed due to their poor homing
capacities. However, the enhancement of Trm proliferation
and function seems to be critical in combating mucosal
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cancers where Trm are prevalent. Promising results in cancer
vaccination indicate that this approach may be the most
productive way to target Trm cells in the clinic, and their
performance in combination with immune checkpoint blockade,
or other immunotherapy modalities, awaits evaluation in clinical
trials.
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