283 research outputs found

    Saccharomyces cerevisiae (Baker's Yeast) as an Interfering RNA Expression and Delivery System

    Get PDF
    The broad application of RNA interference for disease prevention is dependent upon the production of dsRNA in an economically feasible, scalable, and sustainable fashion, as well as the identification of safe and effective methods for RNA delivery. Current research has sparked interest in the use of Saccharomyces cerevisiae for these applications. This review examines the potential for commercial development of yeast interfering RNA expression and delivery systems. S. cerevisiae is a genetic model organism that lacks a functional RNA interference system, which may make it an ideal system for expression and accumulation of high levels of recombinant interfering RNA. Moreover, recent studies in a variety of eukaryotic species suggest that this microbe may be an excellent and safe system for interfering RNA delivery. Key areas for further research and development include optimization of interfering RNA expression in S. cerevisiae, industrial-sized scaling of recombinant yeast cultures in which interfering RNA molecules are expressed, the development of methods for largescale drying of yeast that preserve interfering RNA integrity, and identification of encapsulating agents that promote yeast stability in various environmental conditions. The genetic tractability of S. cerevisiae and a long history of using this microbe in both the food and pharmaceutical industry will facilitate further development of this promising new technology, which has many potential applications of medical importance

    Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes

    Get PDF
    BACKGROUND: RNA interference (RNAi), which has facilitated functional characterization of mosquito neural development genes such as the axon guidance regulator semaphorin-1a (sema1a), could one day be applied as a new means of vector control. Saccharomyces cerevisiae (baker's yeast) may represent an effective interfering RNA expression system that could be used directly for delivery of RNA pesticides to mosquito larvae. Here we describe characterization of a yeast larvicide developed through bioengineering of S. cerevisiae to express a short hairpin RNA (shRNA) targeting a conserved site in mosquito sema1a genes. RESULTS: Experiments conducted on Aedes aegypti larvae demonstrated that the yeast larvicide effectively silences sema1a expression, generates severe neural defects, and induces high levels of larval mortality in laboratory, simulated-field, and semi-field experiments. The larvicide was also found to induce high levels of Aedes albopictus, Anopheles gambiae and Culex quinquefasciatus mortality. CONCLUSIONS: The results of these studies indicate that use of yeast interfering RNA larvicides targeting mosquito sema1a genes may represent a new biorational tool for mosquito control

    The Drosophila Netrin receptor frazzled/DCC functions as an invasive tumor suppressor

    Get PDF
    Abstract Background Loss of heterozygosity at 18q, which includes the Deleted in Colorectal Cancer (DCC) gene, has been linked to many human cancers. However, it is unclear if loss of DCC is the specific underlying cause of these cancers. The Drosophila imaginal discs are excellent systems in which to study DCC function, as it is possible to model human tumors through the generation of somatic clones of cells bearing multiple genetic lesions. Here, these attributes of the fly system were utilized to investigate the potential tumor suppressing functions of the Drosophila DCC homologue frazzled (fra) during eye-antennal disc development. Results Most fra loss of function clones are eliminated during development. However, when mutant clone cells generated in the developing eye were rescued from death, partially differentiated eye cells were found outside of the normal eye field, and in extreme cases distant sites of the body. Characterization of these cells during development indicates that fra mutant cells display characteristics of invasive tumor cells, including increased levels of phospho-ERK, phospho-JNK, and Mmp-1, changes in cadherin expression, remodeling of the actin cytoskeleton, and loss of polarity. Mutation of fra promotes basement membrane degradation and invasion which are repressed by inhibition of Rho1 signaling. Although inhibition of JNK signaling blocks invasive phenotypes in some metastatic cancer models in flies, blocking JNK signaling inhibits fra mutant cell death, thereby enhancing the fra mutant phenotype. Conclusions The results of this investigation provide the first direct link between point mutations in fra/DCC and metastatic phenotypes in an animal model and suggest that Fra functions as an invasive tumor suppressor during Drosophila development.http://deepblue.lib.umich.edu/bitstream/2027.42/112321/1/12861_2011_Article_642.pd

    Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

    Get PDF
    BACKGROUND: Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. METHODS: Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. RESULTS: Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene expression in the developing A. aegypti brain. CONCLUSIONS: These studies revealed sex-specific gene expression profiles in the developing A. aegypti pupal head and identified Doublesex as a key regulator of sexually dimorphic gene expression during mosquito neural development

    High-throughput cis-regulatory element discovery in the vector mosquito Aedes aegypti

    Get PDF
    BACKGROUND: Despite substantial progress in mosquito genomic and genetic research, few cis-regulatory elements (CREs), DNA sequences that control gene expression, have been identified in mosquitoes or other non-model insects. Formaldehyde-assisted isolation of regulatory elements paired with DNA sequencing, FAIRE-seq, is emerging as a powerful new high-throughput tool for global CRE discovery. FAIRE results in the preferential recovery of open chromatin DNA fragments that are not bound by nucleosomes, an evolutionarily conserved indicator of regulatory activity, which are then sequenced. Despite the power of the approach, FAIRE-seq has not yet been applied to the study of non-model insects. In this investigation, we utilized FAIRE-seq to profile open chromatin and identify likely regulatory elements throughout the genome of the human disease vector mosquito Aedes aegypti. We then assessed genetic variation in the regulatory elements of dengue virus susceptible (Moyo-S) and refractory (Moyo-R) mosquito strains. RESULTS: Analysis of sequence data obtained through next generation sequencing of FAIRE DNA isolated from A. aegypti embryos revealed >121,000 FAIRE peaks (FPs), many of which clustered in the 1 kb 5' upstream flanking regions of genes known to be expressed at this stage. As expected, known transcription factor consensus binding sites were enriched in the FPs, and of these FoxA1, Hunchback, Gfi, Klf4, MYB/ph3 and Sox9 are most predominant. All of the elements tested in vivo were confirmed to drive gene expression in transgenic Drosophila reporter assays. Of the >13,000 single nucleotide polymorphisms (SNPs) recently identified in dengue virus-susceptible and refractory mosquito strains, 3365 were found to map to FPs. CONCLUSION: FAIRE-seq analysis of open chromatin in A. aegypti permitted genome-wide discovery of CREs. The results of this investigation indicate that FAIRE-seq is a powerful tool for identification of regulatory DNA in the genomes of non-model organisms, including human disease vector mosquitoes

    Requirement for commissureless2 function during dipteran insect nerve cord development

    Get PDF
    BACKGROUND: In Drosophila melanogaster, commissureless (comm) function is required for proper nerve cord development. Although comm orthologs have not been identified outside of Drosophila species, some insects possess orthologs of Drosophila comm2, which may also regulate embryonic nerve cord development. Here, this hypothesis is explored through characterization of comm2 genes in two disease vector mosquitoes. RESULTS: Culex quinquefasciatus (West Nile and lymphatic filiariasis vector) has three comm2 genes that are expressed in the developing nerve cord. Aedes aegypti (dengue and yellow fever vector) has a single comm2 gene that is expressed in commissural neurons projecting axons toward the midline. Loss of comm2 function in both A. aegypti and D. melanogaster was found to result in loss of commissure defects that phenocopy the frazzled (fra) loss of function phenotypes observed in both species. Loss of fra function in either insect was found to result in decreased comm2 transcript levels during nerve cord development. CONCLUSIONS: The results of this investigation suggest that Fra down-regulates repulsion in precrossing commissural axons by regulating comm2 levels in both A. aegypti and D. melanogaster, both of which require Comm2 function for proper nerve cord development

    PeakMatcher facilitates updated Aedes aegypti embryonic cis-regulatory element map

    Get PDF
    Background: The Aedes aegypti mosquito is a threat to human health across the globe. The A. aegypti genome was recently re-sequenced and re-assembled. Due to a combination of long-read PacBio and Hi-C sequencing, the AaegL5 assembly is chromosome complete and significantly improves the assembly in key areas such as the M/m sex-determining locus. Release of the updated genome assembly has precipitated the need to reprocess historical functional genomic data sets, including cis-regulatory element (CRE) maps that had previously been generated for A. aegypti. Results: We re-processed and re-analyzed the A. aegypti whole embryo FAIRE seq data to create an updated embryonic CRE map for the AaegL5 genome. We validated that the new CRE map recapitulates key features of the original AaegL3 CRE map. Further, we built on the improved assembly in the M/m locus to analyze overlaps of open chromatin regions with genes. To support the validation, we created a new method (PeakMatcher) for matching peaks from the same experimental data set across genome assemblies. Conclusion: Use of PeakMatcher software, which is available publicly under an open-source license, facilitated the release of an updated and validated CRE map, which is available through the NIH GEO. These findings demonstrate that PeakMatcher software will be a useful resource for validation and transferring of previous annotations to updated genome assemblies

    siRNA-Mediated Gene Targeting in Aedes aegypti Embryos Reveals That Frazzled Regulates Vector Mosquito CNS Development

    Get PDF
    Although mosquito genome projects uncovered orthologues of many known developmental regulatory genes, extremely little is known about the development of vector mosquitoes. Here, we investigate the role of the Netrin receptor frazzled (fra) during embryonic nerve cord development of two vector mosquito species. Fra expression is detected in neurons just prior to and during axonogenesis in the embryonic ventral nerve cord of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector). Analysis of fra function was investigated through siRNA-mediated knockdown in Ae. aegypti embryos. Confirmation of fra knockdown, which was maintained throughout embryogenesis, indicated that microinjection of siRNA is an effective method for studying gene function in Ae. aegypti embryos. Loss of fra during Ae. aegypti development results in thin and missing commissural axons. These defects are qualitatively similar to those observed in Dr. melanogaster fra null mutants. However, the Aa. aegypti knockdown phenotype is stronger and bears resemblance to the Drosophila commissureless mutant phenotype. The results of this investigation, the first targeted knockdown of a gene during vector mosquito embryogenesis, suggest that although Fra plays a critical role during development of the Ae. aegypti ventral nerve cord, mechanisms regulating embryonic commissural axon guidance have evolved in distantly related insects

    A conserved female-specific larval requirement for MtnB function facilitates sex separation in multiple species of disease vector mosquitoes

    Get PDF
    Background: Clusters of sex-specific loci are predicted to shape the boundaries of the M/m sex-determination locus of the dengue vector mosquito Aedes aegypti, but the identities of these genes are not known. Identification and characterization of these loci could promote a better understanding of mosquito sex chromosome evolution and lead to the elucidation of new strategies for male mosquito sex separation, a requirement for several emerging mosquito population control strategies that are dependent on the mass rearing and release of male mosquitoes. This investigation revealed that the methylthioribulose-1-phosphate dehydratase (MtnB) gene, which resides adjacent to the M/m locus and encodes an evolutionarily conserved component of the methionine salvage pathway, is required for survival of female larvae. Results: Larval consumption of Saccharomyces cerevisiae (yeast) strains engineered to express interfering RNA corresponding to MtnB resulted in target gene silencing and significant female death, yet had no impact on A. aegypti male survival or fitness. Integration of the yeast larvicides into mass culturing protocols permitted scaled production of fit adult male mosquitoes. Moreover, silencing MtnB orthologs in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus revealed a conserved female-specific larval requirement for MtnB among different species of mosquitoes. Conclusions: The results of this investigation, which may have important implications for the study of mosquito sex chromosome evolution, indicate that silencing MtnB can facilitate sex separation in multiple species of disease vector insects
    • …
    corecore