179 research outputs found
Multichannel FPGA based MVT system for high precision time (20~ps~RMS) and charge measurement
In this article it is presented an FPGA based ulti-oltage hreshold
(MVT) system which allows of sampling fast signals ( ns rising and falling
edge) in both voltage and time domain. It is possible to achieve a precision of
time measurement of ps RMS and reconstruct charge of signals, using a
simple approach, with deviation from real value smaller than 10.
Utilization of the differential inputs of an FPGA chip as comparators together
with an implementation of a TDC inside an FPGA allowed us to achieve a compact
multi-channel system characterized by low power consumption and low production
costs. This paper describes realization and functioning of the system
comprising 192-channel TDC board and a four mezzanine cards which split
incoming signals and discriminate them. The boards have been used to validate a
newly developed Time-of-Flight Positron Emission Tomography system based on
plastic scintillators. The achieved full system time resolution of
(TOF) ps is by factor of two better with respect to the
current TOF-PET systems.Comment: Accepted for publication in JINST, 10 pages, 8 figure
Calculation of time resolution of the J-PET tomograph using the Kernel Density Estimation
In this paper we estimate the time resolution of the J-PET scanner built from
plastic scintillators. We incorporate the method of signal processing using the
Tikhonov regularization framework and the Kernel Density Estimation method. We
obtain simple, closed-form analytical formulas for time resolutions. The
proposed method is validated using signals registered by means of the single
detection unit of the J-PET tomograph built out from 30 cm long plastic
scintillator strip. It is shown that the experimental and theoretical results,
obtained for the J-PET scanner equipped with vacuum tube photomultipliers, are
consistent.Comment: 25 pages, 11 figure
Simulation studies of annihilation-photon's polarisation via Compton scattering with the J-PET tomograph
J-PET is the first positron-emission tomograph (PET) constructed from plastic
scintillators. It was optimized for the detection of photons from
electron-positron annihilation. Such photons, having an energy of 511 keV,
interact with electrons in plastic scintillators predominantly via the Compton
effect. Compton scattering is at most probable at an angle orthogonal to the
electric field vector of the interacting photon. Thus registration of multiple
photon scatterings with J-PET enables to determine the polarization of the
annihilation photons. In this contribution we present estimates on the physical
limitation in the accuracy of the polarization determination of ~keV
photons with the J-PET detector.Comment: Submitted to Hyperfine Interaction
Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector
J-PET is a detector optimized for registration of photons from the
electron-positron annihilation via plastic scintillators where photons interact
predominantly via Compton scattering. Registration of both primary and
scattered photons enables to determinate the linear polarization of the primary
photon on the event by event basis with a certain probability. Here we present
quantitative results on the feasibility of such polarization measurements of
photons from the decay of positronium with the J-PET and explore the physical
limitations for the resolution of the polarization determination of 511 keV
photons via Compton scattering. For scattering angles of about 82 deg (where
the best contrast for polarization measurement is theoretically predicted) we
find that the single event resolution for the determination of the polarization
is about 40 deg (predominantly due to properties of the Compton effect).
However, for samples larger than ten thousand events the J-PET is capable of
determining relative average polarization of these photons with the precision
of about few degrees. The obtained results open new perspectives for studies of
various physics phenomena such as quantum entanglement and tests of discrete
symmetries in decays of positronium and extend the energy range of polarization
measurements by five orders of magnitude beyond the optical wavelength regime.Comment: 10 pages, 14 figures, submitted to EPJ
The effect of gamma irradiation on the structural properties of olivine
Gamma irradiation studies of (Mg0.905Fe0.095)2SiO4 olivine were performed using X-ray fluorescence method, X-ray diffraction, Raman and Mössbauer spectroscopy. The absorbed doses were 300, 600 and 1000 Gy. Small irradiation doses cause an increase of lattice vibrations and small deformation of both M1 and M2 octahedron. The observed effect is similar to the results expose to high temperature. However, the small deformation takes place only in unit cell of Olivine’s structure
Feasibility study of the positronium imaging with the J-PET tomograph
A detection system of the conventional PET tomograph is set-up to record data
from e+ e- annihilation into two photons with energy of 511 keV, and it gives
information on the density distribution of a radiopharmaceutical in the body of
the object. In this paper we explore the possibility of performing the three
gamma photons imaging based on ortho-positronium annihilation, as well as the
possibility of positronium mean lifetime imaging with the J-PET tomograph
constructed from plastic scintillators. For this purposes simulations of the
ortho-positronium formation and its annihilation into three photons were
performed taking into account distributions of photons' momenta as predicted by
the theory of quantum electrodynamics and the response of the J-PET tomograph.
In order to test the proposed ortho-positronium lifetime image reconstruction
method, we concentrate on the decay of the ortho-positronium into three photons
and applications of radiopharmaceuticals labeled with isotopes emitting a
prompt gamma quantum. The proposed method of imaging is based on the
determination of hit-times and hit-positions of registered photons which
enables the reconstruction of the time and position of the annihilation point
as well as the lifetime of the ortho-positronium on an event-by-event basis. We
have simulated the production of the positronium in a cylindrical phantom
composed of a set of different materials in which the ortho-positronium
lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium
created in the human body. The presented reconstruction method for total-body
J-PET like detector allows to achieve a mean lifetime resolution of about 40
ps. Recent Positron Annihilation Lifetime Spectroscopy measurements of
cancerous and healthy uterine tissues show that this sensitivity may allow to
study the morphological changes in cell structures.Comment: accepted in PMB
(http://iopscience.iop.org/article/10.1088/1361-6560/aafe20
The measurement of the E2 nuclear resonance effects in kaonic atoms at DAΦNE: The KAMEO proposal
KAMEO (Kaonic Atoms Measuring Nuclear Resonance Effects Ob-servables) is a proposal for an experiment aiming to perform the first consistent measurement of the E2 nuclear resonance effects in kaonic molybdenum A=94,96,98,100 isotopes. The E2 nuclear resonance mixes atomic states, due to the electrical quadrupole excitation of nuclear rotational states. It occurs in atoms having the energy of a nuclear excitation state closely matching an atomic de-excitation state energy, and affects the rates of X-ray atomic transitions matching the energy of the resonance. The measurement E2 nuclear resonance effect in KMO isotopes allows the study of the strong kaon-nucleus interaction in a rotational excited nuclear state. Moreover, the effect enables the K- to access an inner atomic level not easily reachable by the kaon normal cascade, due to the nuclear absorption. The KAMEO proposed apparatus consists of 4 enriched Mo A=94,96,98,100 isotope strips, exposed to the kaons produced by the DAφNE collider, for kaonic atoms formation, with a high-purity germanium detector, cooled with liquid nitrogen, used to measure the X-ray atomic transitions. The DAφNE collider is located at the National Laboratories of Frascati (LNF-INFN), in Italy. It is already suited for kaonic atoms measurement by the SIDDHARTA-2 collaboration
- …