41 research outputs found

    Mössbauer study of the magnetic phase composition of single-crystalline rutile (TiO2) implanted with iron ions

    Get PDF
    Depth-resolved Mössbauer measurements have been performed for four ferromagnetic samples obtained by the implantation of iron ions (enriched to ∼ 50% with 57Fe isotope) into single-crystalline rutile (TiO2) substrates with two crystallographic orientations [(100) and (001)] at different temperatures (300 and 900 K). It is established that the ferromagnetic properties of iron-implanted rutile samples at room temperature are determined by the presence of α-Fe and Fe3O4 phases. The phase composition of samples obtained by iron implantation into substrates heated to 900 K depends on the crystallographic orientation of the substrate, which is explained by a significant anisotropy of the diffusion of iron atoms in rutile. © Pleiades Publishing, Ltd., 2009

    Magnetic phase composition of strontium titanate implanted with iron ions

    Get PDF
    Thin magnetic films were synthesized by means of implantation of iron ions into single-crystalline (1 0 0) substrates of strontium titanate. Depth-selective conversion electron Mössbauer spectroscopy (DCEMS) indicates that origin of the samples magnetism is α-Fe nanoparticles. Iron-substituted strontium titanate was also identified but with paramagnetic behaviour at room temperature. Surface magneto-optical Kerr effect (SMOKE) confirms that the films reveal superparamagnetism (the low-fluence sample) or ferromagnetism (the high-fluence sample), and demonstrate absence of magnetic in-plane anisotropy. These findings highlight iron implanted strontium titanate as a promising candidate for composite multiferroic material and also for gas sensing applications. © 2011 Elsevier Ltd. All rights reserved

    Structural and magnetic studies of Co and Fe implanted BaTiO 3 crystals

    Get PDF
    Singly-charged Co or Fe ions with energy 40 keV were implanted into single-domain ferroelectric plates of barium titanate (BaTiO 3) with high fluences in the range of (0.5-1.5) × 10 17 ion/cm 2 to create new magnetoelectric materials. Scanning electron microscopy (SEM) and conversion electron Mössbauer spectroscopy (CEMS) studies have shown that high-fluence implantation with 3d-ions results in formation of cobalt or iron nanoparticles in the near-surface irradiated region of perovskite-type crystal. With increasing the fluence, the both Co- and Fe-implanted BaTiO 3 samples reveal at first superparamagnetic, and then ferromagnetic properties at room temperature. Analysis of magnetic hysteresis loops measured in the in-plane and out-of-plane geometries have shown that ferromagnetic BaTiO 3:Co(Fe) nanocomposite layers display the "easy plane" magnetic anisotropy similar to that found for thin granular magnetic films. Together with our previous observation of the magnetoelectric effect in these samples, our structural and magnetic investigations show that the ion implantation is suitable to synthesize the desired magnetoelectric nanocomposite materials. © 2011 Elsevier B.V. All rights reserved

    Ion beam synthesis and investigation of nanocomposite multiferroics based on barium titanate with 3d metal nanoparticles

    Get PDF
    Samples of nanocomposite multiferroics have been synthesized by implantation of Co+, Fe+, and Ni+ ions with an energy of 40 keV into ferroelectric barium titanate plates to doses in the range (0.5-1.5) × 1017 ions/cm2. It has been found that nanoparticles of metallic iron, cobalt, or nickel are formed in the barium titanate layer subjected to ion bombardment. With an increase in the implantation dose, the implanted samples sequentially exhibit superparamagnetic, soft magnetic, and, finally, strong ferromagnetic properties at room temperature. The average sizes of ion-synthesized 3d-metal nanoparticles vary in the range from 5 to 10 nm depending on the implantation dose. Investigation of the orientation dependence of the magnetic hysteresis loops has demonstrated that the samples show a uniaxial ("easy plane") magnetic anisotropy typical of thin granular magnetic films. Ferromagnetic BaTiO3: 3d metal samples are characterized by a significant shift of the ferromagnetic resonance signal in an external electric field, as well as by a large (in magnitude) magnetodielectric effect at room temperature. These results indicate that there is a strong magnetoelectric coupling between the ferroelectric barium titanate matrix and ion-synthesized nanoparticles of magnetic metals. © 2013 Pleiades Publishing, Ltd

    Production of {\pi}+ and K+ mesons in argon-nucleus interactions at 3.2 AGeV

    Full text link
    First physics results of the BM@N experiment at the Nuclotron/NICA complex are presented on {\pi}+ and K+ meson production in interactions of an argon beam with fixed targets of C, Al, Cu, Sn and Pb at 3.2 AGeV. Transverse momentum distributions, rapidity spectra and multiplicities of {\pi}+ and K+ mesons are measured. The results are compared with predictions of theoretical models and with other measurements at lower energies.Comment: 29 pages, 20 figure

    The relation of idiotype expression to isotype and allotype in the anti-p-azobenzenearsonate response.

    No full text
    Depth-resolved Mössbauer measurements have been performed for four ferromagnetic samples obtained by the implantation of iron ions (enriched to ∼ 50% with 57Fe isotope) into single-crystalline rutile (TiO2) substrates with two crystallographic orientations [(100) and (001)] at different temperatures (300 and 900 K). It is established that the ferromagnetic properties of iron-implanted rutile samples at room temperature are determined by the presence of α-Fe and Fe3O4 phases. The phase composition of samples obtained by iron implantation into substrates heated to 900 K depends on the crystallographic orientation of the substrate, which is explained by a significant anisotropy of the diffusion of iron atoms in rutile. © Pleiades Publishing, Ltd., 2009

    Magnetic phase composition of strontium titanate implanted with iron ions

    Get PDF
    Thin magnetic films were synthesized by means of implantation of iron ions into single-crystalline (1 0 0) substrates of strontium titanate. Depth-selective conversion electron Mössbauer spectroscopy (DCEMS) indicates that origin of the samples magnetism is α-Fe nanoparticles. Iron-substituted strontium titanate was also identified but with paramagnetic behaviour at room temperature. Surface magneto-optical Kerr effect (SMOKE) confirms that the films reveal superparamagnetism (the low-fluence sample) or ferromagnetism (the high-fluence sample), and demonstrate absence of magnetic in-plane anisotropy. These findings highlight iron implanted strontium titanate as a promising candidate for composite multiferroic material and also for gas sensing applications. © 2011 Elsevier Ltd. All rights reserved

    Magnetic phase composition of strontium titanate implanted with iron ions

    No full text
    Thin magnetic films were synthesized by means of implantation of iron ions into single-crystalline (1 0 0) substrates of strontium titanate. Depth-selective conversion electron Mössbauer spectroscopy (DCEMS) indicates that origin of the samples magnetism is α-Fe nanoparticles. Iron-substituted strontium titanate was also identified but with paramagnetic behaviour at room temperature. Surface magneto-optical Kerr effect (SMOKE) confirms that the films reveal superparamagnetism (the low-fluence sample) or ferromagnetism (the high-fluence sample), and demonstrate absence of magnetic in-plane anisotropy. These findings highlight iron implanted strontium titanate as a promising candidate for composite multiferroic material and also for gas sensing applications. © 2011 Elsevier Ltd. All rights reserved
    corecore