77 research outputs found

    Dynamical effects induced by long range activation in a nonequilibrium reaction-diffusion system

    Full text link
    We both show experimentally and numerically that the time scales separation introduced by long range activation can induce oscillations and excitability in nonequilibrium reaction-diffusion systems that would otherwise only exhibit bistability. Namely, we show that the Chlorite-Tetrathionate reaction, where autocatalytic species diffuses faster than the substrates, the spatial bistability domain in the nonequilibrium phase diagram is extended with oscillatory and excitability domains. A simple model and a more realistic model qualitatively account for the observed behavior. The latter model provides quantitative agreement with the experiments.Comment: 19 pages + 9 figure

    Turing Instability in a Boundary-fed System

    Get PDF
    The formation of localized structures in the chlorine dioxide-idodine-malonic acid (CDIMA) reaction-diffusion system is investigated numerically using a realistic model of this system. We analyze the one-dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry-breaking perturbations (Turing instability) in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis which neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experiments.Comment: 41 pages, 18 figures, to be published in Physical Review

    Existencia y unicidad de solución y comportamiento asintótico para la ecuación de onda con condición de frontera del tipo Neumann y disipación localmente distribuido

    Get PDF
    En este trabajo se estudia la existencia y unicidad de solución de la ecuación de la onda con condiciones de frontera del tipo Neumann, con disipación localmente distribuida usando el método de Faedo Galerkin. Además analiza el decaimiento no exponencial de la energía asociado al sistema planteado. Se hacen las estimativas correspondientes basándose en propiedades del espacio donde se encuentra la solución de la ecuación, así como los teoremas correspondientes al sistema estudiado.Tesi

    Corrigendum: Bacillus Calmette–Guérin-Induced Trained Immunity Is Not Protective for Experimental Influenza A/Anhui/1/2013 (H7N9) Infection in Mice

    Get PDF
    Avian influenza A of the subtype H7N9 has been responsible for almost 1,600 confirmed human infections and more than 600 deaths since its first outbreak in 2013. Although sustained human-to-human transmission has not been reported yet, further adaptations to humans in the viral genome could potentially lead to an influenza pandemic, which may have severe consequences due to the absence of pre-existent immunity to this strain at population level. Currently there is no influenza A (H7N9) vaccine available. Therefore, in case of a pandemic outbreak, alternative preventive approaches are needed, ideally even independent of the type of influenza virus outbreak. Bacillus Calmette–Guérin (BCG) is known to induce strong heterologous immunological effects, and it has been shown that BCG protects against non-related infection challenges in several mouse models. BCG immunization of mice as well as human induces trained innate immune responses, resulting in increased cytokine responses upon subsequent ex vivo peripheral blood mononuclear cell restimulation. We investigated whether BCG (Statens Serum Institut-Denmark)-induced trained immunity may protect against a lethal avian influenza A/Anhui/1/2013 (H7N9) challenge. Here, we show that isolated splenocytes as well as peritoneal macrophages of BCG-immunized BALB/c mice displayed a trained immunity phenotype resulting in increased innate cytokine responses upon ex vivo restimulation. However, after H7N9 infection, no significant differences were found between the BCG immunized and the vehicle control group at the level of survival, weight loss, pulmonary influenza A nucleoprotein staining, or histopathology. In conclusion, BCG-induced trained immunity did not result in protection in an oseltamivir-sensitive influenza A/Anhui/1/2013 (H7N9) challenge mouse model

    DHEA metabolism in arthritis - A role for the p450 enzyme Cyp7b at the immune-endocrine crossroad

    No full text
    For dehydroepiandrosterone (DUEA) both immunosuppressive and immuno-stimulating properties have been described. The immunosuppressive effects may be explained by the conversion of DHEA into androgens and/or estrogens. The described immuno-stimulating effects of DHEA may be due to the conversion of DHEA into 7 alpha-hydroxy-DHEA (7 alpha-OH-DHEA) by the activity of the p450 enzyme, Cyp7b. 7 alpha-OH-DHEA is thought to have anti-glucocoticoid activity preventing the anti-inflammatory action of endogenous glucocorticoids. To investigate a putative role of Cyp7b in the arthritic process, tissues from both the murine collagen-induce arthritis (CIA) model and from patients with rheumatoid arthritis (RA) were studied. We determined the Cyp7b expression levels in synovial tissue and the level of 7 alpha-OH-DHEA in both serum and arthritic joints of mice with CIA. Our studies showed that the severity of arthritis correlates with increased Cyp7b activity. Next, we investigated Cyp7b expression and activity in RA patients where the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) are known to control the disease process. Fibroblast-like synoviocytes (FLS), isolated from RA synovial biopsies were found to express Cyp7b mRNA. In addition, Cyp7b enzymatic activity was detected in these cells. We also investigated whether Cyp7b activity is regulated by cytokines. Proinflammatory (e.g., TNF-alpha and IL-1 beta) cytokines were found to stimulate Cyp7b activity and the anti-inflammatory cytokine transforming growth factor-beta (TGF-beta) was found to suppress Cyp7b activity in FLS. Next, we studied which signal transduction pathway is involved in the TNF-alpha-mediated induction of Cyp7b activity in human FLS. The results show a role for nuclear factor kappa B (NF kappa B) and activator protein-1 (AP-1) in the regulation of Cyp7b expression. Finally, we established that the effects of DHEA or 7 alpha-OH-DHEA on the immune system can not be explained by glucocorticoid receptor (GR) engagement. The role of the p450 enzyme Cyp7b in DHEA metabolism and its relevance in the arthritic process will be discussed.</p
    corecore